An Inequality Between Compositions of Weighted Arithmetic and Geometric Means

Authors:

Keywords:

Date Received:
Date Accepted:
Subject Codes:

Editors:

Abstract:

Finbarr Holland,
Weighted averages, Carleman's inequality, Convexity, Induction.

09/06/06
08/12/06
Primary 26D15.
Grahame Bennett,

Let \mathbb{P} denote the collection of positive sequences defined on \mathbb{N}. Fix $w \in \mathbb{P}$. Let s, t, respectively, be the sequences of partial sums of the infinite series $\sum w_{k}$ and $\sum s_{k}$, respectively. Given $x \in \mathbb{P}$, define the sequences $A(x)$ and $G(x)$ of weighted arithmetic and geometric means of x by

$$
A_{n}(x)=\sum_{k=1}^{n} \frac{w_{k}}{s_{n}} x_{k}, G_{n}(x)=\prod_{k=1}^{n} x_{k}^{w_{k} / s_{n}}, n=1,2, \ldots
$$

Under the assumption that $\log t$ is concave, it is proved that $A(G(x)) \leq G(A(x))$ for all $x \in \mathbb{P}$, with equality if and only if x is a constant sequence.

Download Screen PDF
Download Print PDF
0 Send this article to a friend
믈. Print this page

