

Volumes

Reviews

Submissions

An Inequality Between Compositions of Weighted Arithmetic and Geometric Means

RGMIA

Authors:	Finbarr Holland,
Keywords:	Weighted averages, Carleman's inequality, Convexity, Induction.
Date Received:	09/06/06
Date Accepted:	08/12/06
Subject Codes:	Primary 26D15.
Editors:	Grahame Bennett,

Abstract:

Let \mathbb{P} denote the collection of positive sequences defined on \mathbb{N} . Fix $w \in \mathbb{P}$. Let s, t, respectively, be the sequences of partial sums of the

infinite series $\sum w_k$ and $\sum s_k$, respectively. Given $x \in \mathbb{P}$, define the sequences A(x) and G(x) of weighted arithmetic and geometric means of x by

$$A_n(x) = \sum_{k=1}^n \frac{w_k}{s_n} x_k, \ G_n(x) = \prod_{k=1}^n x_k^{w_k/s_n}, \ n = 1, 2, \dots$$

Under the assumption that $\log t$ is concave, it is proved that

 $A(G(x)) \leq G(A(x)) \mbox{ for all } x \in \mathbb{P}, \mbox{ with equality if and only if } x \mbox{ is a }$ constant sequence.

search

login