Home

Volume 2, Issue 3, Article 29

A Weighted Analytic Center for Linear Matrix Inequalities

Authors: Irwin S. Pressman, Shafiu Jibrin,

Keywords: Weighted analytic center, Semidefinite Programming,

Linear Matrix Inequalities, Convexity, Real Algebraic

Variety.

Date Received: 21/03/01

Date Accepted: 21/03/01

90C25,49Q99,46C05,14P25 **Subject Codes:**

Editors: Jonathan Borwein,

Let \mathcal{R} be the convex subset of \mathbb{R}^n defined by q simultaneous linear Abstract:

matrix inequalities

(LMI) $A_0^{(j)} + \sum_{i=1}^n x_i A_i^{(j)} \succ 0, \quad j=1,2,\ldots,q$. Given a strictly

positive vector $\omega=(\omega_1,\omega_2,\cdots,\omega_q)$, the weighted analytic center

 $x_{ac}(\omega)$ is the minimizer**argmin** $(\phi_{\omega}(x))$ of the strictly convex function

 $\phi_{\omega}(x) = \sum_{j=1}^q \omega_j \log \det[A^{(j)}(x)]^{-1}$ over ${\mathcal R}$. We give a

necessary and sufficient condition for a point of ${\mathcal R}$ to be a weighted analytic center. We study the argmin function in this instance and show that it is a continuously differentiable open function.

In the special case of linear constraints, all interior points are weighted analytic centers. We show that the region

 $\mathcal{W} = \{x_{ac}(\omega) \mid \omega > 0\} \subseteq \mathcal{R}$ of weighted analytic centers for LMI's

is not convex and does not generally equal $\mathcal R$. These results imply that the techniques in linear programming of following paths of analytic centers may require special consideration when extended to semidefinite programming.

We show that the region ${\mathcal W}$ and its boundary are described by real algebraic varieties, and provide slices of a non-trivial real algebraic variety to show that ${\mathcal W}$ isn't convex. Stiemke's Theorem of the alternative provides a practical test of whether a point is in \mathcal{W} . Weighted analytic centers are used to improve the location of standing points for the Stand and Hit method of identifying necessary LMI constraints in semidefinite programming.

search [advanced search] copyright 2003 terms and conditions login