Home

Editors

Submissions

Reviews

Volumes

RGMIA

About Us

Volume 3, Issue 4, Article 52

A Polynomial Inequality Generalising an Integer Inequality

Authors: Roger B. Eggleton, William P. Galvin,

Keywords: Polynomial inequality, Sums of Products of Digits,

Bernoulli inequality.

Date Received: 01/05/02

Date Accepted: 07/06/02

Subject Codes: 26D15,26C99

Editors: Hillel Gauchman,

Abstract: For any $\mathbf{a} := (a_1, a_2, \dots, a_n) \in (\mathbb{R}^+)^n$, we establish inequalities

between the two homogeneous polynomials

$$\Delta P_{\mathbf{a}}(x,t) := (x + a_1 t)(x + a_2 t) \cdots (x + a_n t) - x^n$$
 and

 $S_{\mathbf{a}}(x,y) := a_1 x^{n-1} + a_2 x^{n-2} y + \cdots + a_n y^{n-1}$ in the positive orthant

 $x,y,t\in\mathbb{R}^+$. Conditions for $\Delta P_{\mathbf{a}}(x,t)\leq tS_{\mathbf{a}}(x,y)$ yield a new proof

and broad generalization of the number theoretic inequality that for base

 $b \geq 2$ the sum of all nonempty products of digits of any $m \in \mathbb{Z}^+$ never

exceeds m, and equality holds exactly when all auxiliary digits are b-1.

Links with an inequality of Bernoulli are also noted. When $n \geq 2$ and ${\bf a}$ is

strictly positive, the surface $\Delta P_{\mathbf{a}}(x,t) = tS_{\mathbf{a}}(x,y)$ lies between the

planes $y = x + t \max\{a_i : 1 < i < n - 1\}$ and

 $y = x + t \min\{a_i : 1 < i < n-1\}$. For fixed $t \in \mathbb{R}^+$, we explicitly

determine functions $\alpha, \beta, \gamma, \delta$ of **a** such that this surface is

$$y = x + \alpha t + \beta t^2 x^{-1} + O(x^{-2})$$
 as $x \to \infty$, and

$$y = \gamma t + \delta x + O(x^2)$$
 as $x \to 0 + .$

Download Screen PDF

Download Print PDF

Send this article to a friend

Print this page

search [advanced search] copyright 2003 terms and conditions login