

Volume 7, Issue 5, Article 174

A New Obstruction to Minimal Isometric
Immersions into a Real Space Form

Authors:	Teodor Oprea,
Keywords:	Constrained maximum, Chen's inequality, Minimal submanifolds.
Date Received:	29/11/05
Date Accepted:	23/11/06
Subject Codes:	53C21, 53C24, 49K35.
Editors:	Sever S. Dragomir,
Abstract:	In the theory of minimal submanifolds, the following problem is funda

Abstract:

In the theory of minimal submanifolds, the following problem is fundamental: when does a given Riemannian manifold admit (or does not admit) a minimal isometric immersion into an Euclidean space of arbitrary dimension? S.S. Chern, in his monograph [6] Minimal submanifolds in a Riemannian manifold, remarked that the result of Takahashi (the Ricci tensor of a minimal submanifold into a Euclidean space is negative semidefinite) was the only known Riemannian obstruction to minimal isometric immersions in Euclidean spaces. A second obstruction was obtained by B.Y. Chen as an immediate application of his fundamental inequality [1]: the scalar curvature and the sectional curvature of a minimal submanifold into a Euclidean space satisfies the inequality $\tau \leq k$. We find a new relation between the Chen invariant, the

dimension of the submanifold, the length of the mean curvature vector field and a deviation parameter. This result implies a new obstruction: *the sectional curvature of a minimal submanifold into a Euclidean space also satisfies the inequality* $k \leq -\tau$.

Å	Download Screen PDF
Å	Download Print PDF
- *	Send this article to a friend
₽	Print this page

login