

Volume 8, Issue 2, Article 51

\$S\$-Geometric Convexity of a Function Involving Maclaurin's Elementary Symmetric Mean

Authors:	Xiao-Ming Zhang,
Keywords:	Geometrically convex function, \$S\$-geometrically convex function, Inequality, Maclaurin- Inequality, Logarithm majorization.
Date Received:	23/02/07
Date Accepted:	27/04/07
Subject Codes:	Primary 26D15.
Editors:	Peter S. Bullen,
Abstract:	Let $x_i > 0, i = 1, 2, \ldots, n$, $x = (x_1, x_2, \ldots, x_n)$, the k th elementary
	symmetric function of x is defined as $P_n\left(x,k ight)=\left(\binom{n}{k}^{-1}E_n\left(x,k ight) ight)^{rac{1}{k}}$,
	and the function f is defined as $f(x)=P_n(x,k-1)-P_n(x,k).$ The
	paper proves that f is a S-geometrically convex function. The result
	generalizes the well-known Maclaurin-Inequality.

Download Screen PDF Download Print PDF

- Do\
- Send this article to a friend
- Print this page