Mathematics > Combinatorics

Origami rings

Joe Buhler, Steve Butler, Warwick de Launey, Ron Graham

(Submitted on 11 Nov 2010)
Motivated by a question in origami, we consider sets of points in the complex plane constructed in the following way. Let \$L_lalpha(p)\$ be the line in the complex plane through \$p\$ with angle \$lalpha\$ (with respect to the real axis). Given a fixed collection $\$ \mathrm{U} \$$ of angles, let $\$ \backslash R U \$$ be the points that can be obtained by starting with $\$ 0 \$$ and $\$ 1 \$$, and then recursively adding intersection points of the form \$L_lalpha(p) Icap L_Ibeta(q)\$, where $\$ p, q \$$ have been constructed already, and \$lalpha, \beta\$ are distinct angles in \$U\$.
Our main result is that if $\$ U \$$ is a group with at least three elements, then $\$ \backslash R U \$$ is a subring of the complex plane, i.e., it is closed under complex addition and multiplication. This enables us to answer a specific question about origami folds: if $\$ n$ lge $3 \$$ and the allowable angles are the $\$ n \$$ equally spaced angles $\$ k / p i / n \$$, $\$ 0 \backslash l e k<n \$$, then $\$ \backslash R U \$$ is the ring $\$ \backslash Z[$ lzeta_n] $\$$ if $\$ n \$$ is prime, and the ring $\$ \backslash Z$ $\left[1 / n, \backslash z e t a _\{n\}\right] \$$ if $\$ n \$$ is not prime, where $\$ \backslash z e t a _n:=\backslash \exp (2 \backslash p i \mathrm{i} / n) \$$ is a primitive $\$ \mathrm{n} \$$-th root of unity.

Comments: 12 pages, 4 figures
Subjects: Combinatorics (math.CO); Number Theory (math.NT)
MSC classes: 11R04, 11R18, 00A08
Cite as: arXiv:1011.2769v1 [math.CO]

Submission history

From: Steve Butler [view email]
[v1] Thu, 11 Nov 2010 21:06:35 GMT (93kb)

Which authors of this paper are endorsers?

Download:

- PDF
- PostScript
- Other formats

Current browse context:
math.CO
< prev | next >
new | recent | 1011
Change to browse by:
math
math.NT

References \& Citations

- NASA ADS

Bookmark (what is this?)

