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Abstract: Based on the fixed point theory, the asymptotical stability of mild solution to impulsive

stochastic partial differential equations with infinite delays and Markovian jumps is studied. In
addition, some conditions are derived to ensure the ensuing result. In particular, since Markovian

jumps are considered in this work, the result derived from this paper generalizes the result obtained in

Sakthivel et al’s publication.

Key words: impulse; mild solution; asymptotical stability; Markovian jumps

CLC number: 0211.63

Recently, stochastic partial differential equations in
a separable Hilbert space have been studied by many
authors and there are many valuable results on stability.
For example, Caraballo et al™ investigated the
exponential stability of mild solutions of stochastic
partial differential equations with delays by stochastic
integral techniques. By the fixed point theory, Luo™

studied the asymptotical mean square stability of mild

solution of neutral stochastic delay differential equations.

Based on the method®?, Sakthivel et al® proved mild
solution of nonlinear impulsive stochastic differential
equation is asymptotically stable. However, so far, there
are few results about the stability of impulsive stochastic
partial differential equations with infinite delays and
Markovian jumps.

Motivated by the above discussion, in this paper,
we study the asymptotical stability of mild solution for
impulsive stochastic partial differential equations with
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infinite delays and Markovian jumps of the form
dx(z) =[Ax(2) + a(t, x(t — (), r(¢)))]dt +
b(t,x(t—p@)),r@)dW (¢),t =0,t = 1¢,, 1)
ax(t,) =x(t;) - x(;;) =

I, (x@).t=t k=12 ,m, 2
x, = ¢ € Cp (3,01 X). 3)

1 Preiminaries

Let X,Y be two real separable Hilbert spaces and
we denote by ||-||,,||-]l, their vector norms. We denote
the notation ||-|| for the norm of L(Y,X),
L(Y,X) denotes the set of all bounded linear operators
fromY into X . Besides, let (Q F,P) be a complete
probability space equipped with some filtration {F}

t=0

where

satisfying the usual conditions, i.e., the filtration is right
continuous and F;, contains all P-null sets. Moreover,
We use Cg([ﬁ,O];X) to denote the family of all
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almost surely bounded, Fj;-measurable and continuous
random variables from [7,0] to X, equipped with
the norm | ¢ [l = SUpgs 1 | () I -

Let W(r) be a Wiener process defined on
(Q F,P) and taking values in the separable Hilbert
space Y, with covariance operator Q™.
{r(t), teR} be a
continuous Markov chain on (Q F,P) which take
values in a finite state space S ={1,2,---,N}.

Furthermore, let right-

Now, we make the system (1)~(3) precise: 4 isa
infinitesimal generator of a semigroup of bounded linear
operators 7'(¢),t=0 defined on X . Let R =[0,0)
and the mappings a:R. xX—X, b:RxX— L(Y, X)
are all Borel measurable, meanwhile, «:R, > R,,
B:R.—R, areall continuous, /,:X—X. Besides, ¢—
a(t)—> o, t—B(t)—>oast—>oo, and 7 =max{inf(s—
a(s),s = 0), inf(s— £(s),s =0)} . Furthermore, x(z;)
and x(z;) denote the right-hand and left-hand limits of
x(r) attime t=¢,_; and the fixed moments ¢, satisfy
0< t1<---<tm<1[mtk =o0; ax(t,)=x(¢])—x(¢,) denote
the jumps in the state at time 7, with 7, which
determine the size of the jumps, k=1,2,---,m.

Definition 1 A stochastic process {x(z),z [0,
T1}, 0<T <+, is called mild solution of (1)~(3) if

(1) x(¢) isadaptedto F,,z=0.

(2) x(t)e X is continuous on t<[0,7] almost
surely, and for arbitrary 0<¢<T,

x(2) = T(1)$(0) + jO’T(t —s)a-
(s,x(s —a(s)),r(s))ds +

J.; T(t—5)b(s,x(s — B(s)),7(s))dW (s) +
> T(=1)1,(x(1), 4

<ty <t
and x,=¢e€ Cﬁo ([7,0]; X) .

Definition 2 Let p>2 be an integer. Eq. (4) is
said to be stable in p-th moment, if for any given &>0,
there exist a positive constant & such that ||¢||.<o
and

E{S,!E’ I x(0) |13} <e. (®)

Definition 3 Let p>2 be an integer. Eq. (4) is
said to be asymptotically stable in p-th moment if it is

stable in p-th moment and for any ¢eC,’;O ([n,0]; X),

the following holds
lim E{sup || x() |l } = 0. (6)

In order to study the stability of system (1)~(3), we
impose the following assumptions hold:

(BL) ||IT@)|,<Me™, Vt=0, where M >0
and 1>0.

(BZ) ”a(t!x!i)_a(t!yli)||X<M1||x_y”)(1 Vt>0’
x,yeXand ieS,where M, >0.

(B3) [lb(t,x,0)=b(t,y,) < M, [ x=y |y, V=0,
x,yeXand ieS,where M,>0.

B4 11,6)-LI<qllx-yl,, VryeX,
where0< g, <+o,k=12,---,m.

2 Sability analysis

Let S be the Banach space of all F, -adapted
processes ¢(t,w):[n,0)x 2 — R, meanwhile, for any
fixed we 2, ¢(t,w) is almost surely continuous in
t; when se[n,0], (s, ®)=d(s); and E | ot o)k —
Oas t—> .

Moreover, we shall assume that

f(0,i)=0, ¢g(20,i)=0,
and

1,(0)=0 (k=12,---,m),
for any

t=0 and ieS.

Then, Egs. (1)~(3) has a trivial solution when
¢=0.

Theorem 1 Let p>=2 be an integer. Suppose
Assumptions (B1)~(B4) hold, then Eq. (4) is asymptotic
stability in p-th moment if

GEMP (MNP AT +

MINT?C K A +m" Yy " gl ) <1, (7)
where

C,=(p"/2(p-)"™")"",

K,=QAp-1/(p-2))"".

Proof Define an operator v:S—S by
(vx)() = @(2) , for te[n,0],and for =0,

(LX)(©) =T()p(0) + | T(t~s)a
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(s,x(s —a(s)),r(s))ds +
J;T(t —8)b(s,x(s — B(s)),r(s))dW (s) +
Z T =), (x(1,) =

0<ty <t
L)+ L) + Ly (0) + 1,(2). ®)
Next, we divide the proof into three steps.
Firstly, we show the p-th moment continuity of v,
for te[0,). Letevery xeS and ¢, =0, we have
E || 0x)(ty +7) = 0x)(1) I <

4
Y EN L (6 +r) =L (0) I 9)
i=1

It is easy to know that

I.ingE”Il.(to+r)—]i(t0)||f(:0,i:l,2. (10)

Moreover, by using the Bukhdlder-Davis-Gundy
inequality, we have

E| Lt +r)— L) 1<

N f
21’*1(:1,15(;[0 TGt +7—5)=T(t,— )% -

165, x(5 = ). IF o)™+
2, B [T+ =) -

[16(s, x(s = B()), D) IIF ds)”"?, (11)
and it is easy to see
E| 1ty +r)— 1 (t) 5 <
2 M (e 1) ( Y )"

0<ty <ty

Y g " IEN ) Il 27 M

0<t, <ty

EC Y g™ Ix(e) 1) (12)

So from (11) and (12) we have

imE( L +r)~1,) =0, j=34  (13)

Therefore, we know that o is continuous in p-th
moment on ¢ e[0,).

Secondly, we prove that v(S)c S . From (2) we
have

Ellx0)0 ;<47 ENT@¢O) |} +4""E]-

j;T(t—s)a(s,x(s —a(s)),r(s))ds |5 +

#2E| [ (= 5)b(s, x(s = B(s)),(5)-
A ()l +4 BNl Y Tl—1)0, (:(0) =

O<t <t

J(O)+ T, (@) + J5(6) + 1, (1) (14)

obviously, we get
L) <A M | g(0) 1<
47 MPe || 20, as ¢ —> oo (15)
Besides, it follows from Assumptions (B1), (B2)
and Hoélder’s inequality that

N t
SOy <4 MPMPEQY. | et
i=1

| x(s —a()) |l ds)” <
4MPMPNT (@) 2)PD
[ Ote”m’“)E [l x(s — ar(s)) ||, ds. (16)
Based on the definition of S, then for x(¢f)eS
and any &>0, there exists some ¢ >0 such that

E|x(t—a@®)|x<e when >t . Hence, we obtain
J,() <4 M"M}N? QI A)" Y.
[, e N (s —als) I ds+
AEMPMINT (@] A) 6. (17)
It is easy to know that there exists some ¢, >¢,
such that forany ¢>¢,,
A7 MPMENT (L A) PP e
[y Ellx(s—a() |y ds<
e—4TMPMINY (LI 2) e, (18)
which together with (17) yields that
t
J,(t)=4"E|| j T(t=s)a(s,x(s—a(s)),
r(s))ds||5—0, as ¢t—oo. (19

Furthermore, by using the Bukhdélder-Davis-Gundy
inequality, the following holds

Jy(t) <4 *M?MJC N""?.

E([, e | x(s = As) I ds)™ <

4" *MPMJC N"?K -

[Le B x(s = pls) Il ds. (20)
It is necessary to note when p =2, inequality (20)

also holds with 0°:=1. Similar to the proof of (19),
from (20), it is easy to derive that

Jy(t) =4 E || Tt = )b(s, x(s ~ B(s)),
r(s))dW(s)||x—0, as t— . (21)

Using Assumption (B4) and Holder’s inequality,
we get
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J, ()< 4p’lm”’lMpZm:e%”(’7”) .

k=1

gl E | x(t,)|lx—0,as t— oo (22)

Therefore, from the above discussion, we know
that E| (ux)(®)||s—0 as t—o. That is to say, v
maps S into itself.

Next, we verify that o is contractive. Similar to
the above discussion, we obtain for any x,yeS,
7 €(0,) , the following holds

E sup | (vx)(1) = () () Iz <

te[0,7]

Ok sup [ x(0) =y Il

1e[0,7

(23)

where
Q,=3"'M"(M/N"A"+
MIN"?C K A"+ mpflzm: al ).

Form (7) and (23), we know o is a contraction
mapping. Hence, by the contraction mapping principle,
we obtain that o has a unique fixed point x(¢) in S,
and x(¢) is a solution of Eqg. (4), meanwhile, when
te[n,0], x(s)=¢(s); and E| x()|s—0,as t—> .

For the purpose of asymptotic stability, we need to
show that the mild solution of Egs. (1)~(3) is stable in
p-th moment. For any fixed & >0, we choose

O<o<e
which satisfies the condition

YIMPS+ AT M (MNP AT +

MIN"*C,K A"+ m”‘li qe<e.
k=1

If x(z) = x(2,0,¢) is a mild solution of system (1)~

(3) with|| ¢ ||5< &, then x(¢) is defined in (4) and (vx)(r)=
x(r). Next, we show that forany =0, E|| x(?)|l5< &.
It is easy to know that E| x(z)|,<eonze[n,0].
Suppose there exists some 7 such that

E|lx(@)Il;=¢,
and

Elx@)ly<e,
where

te[n,f).

Then, from (14), we obtain that
E|x(@)|Z<4"MPS+4"MP (M N 27" +
MIN"*C,K A7+ mﬂiqf)g <e,

k=1
which contradicts the definition of 7. Therefore, the
mild solution of Egs. (1)~(3) is asymptotically stable in
p-th moment. This completes the proof of Theorem 1.
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