文章编号:1001-5132 (2010) 01-0118-05

Nonexistence of (3,2,1)-conjugate *r*-orthogonal Latin Squares of Order *v* for $r \in \{v+2,v+3,v+5\}$

ZHANG Jin-tao, XU Yun-qing

(Faculty of Science, Ningbo University, Ningbo 315211, China)

Abstract: Two latin squares of order $v, L = (l_{ij})$ and $M = (m_{ij})$ are called to be *r*-orthogonal if their superposition produces exactly *r* distinct ordered pairs, that is $|\{(l_{ij}, m_{ij}): 1 \le i, j \le v\}| = r$, which is denoted by *r*-MOLS(*v*). It has been proved that there does not exist an *r*-MOLS(*v*) for $r \in \{v+1, v^2 - 1\}$. If *M* is the (3,2,1)-conjugate of *L*, then *L* is called to be (3,2,1)-conjugate *r*-orthogonal, as denoted by (3,2,1)-*r*-COLS(*v*). In this paper, the nonexistence of (3,2,1)-*r*-COLS(*v*) for $r \in \{v+2, v+3, v+5\}$ is proved.

Key words: latin square; r-orthogonal; (3,2,1)-conjugateCLC number: 0144Document code: A

0 Introduction

A quasigroup is an ordered pair (Q, \otimes) , where Qis a set and \otimes is a binary operation on Q, such that the equations $a \otimes x = b$ and $y \otimes a = b$ are uniquely solvable for every pair of elements a, b in Q. It's fairly well know that the multiplication table of a quasigroup defines a latin square, that is, a latin square can be viewed as the multiplication table of a quasigroup with the headline and sideline removed.

If (Q, \otimes) is a quasigroup, we may define six binary operations $\otimes_{(1,2,3)}$, $\otimes_{(1,3,2)}$, $\otimes_{(2,1,3)}$, $\otimes_{(2,3,1)}$, $\otimes_{(3,1,2)}$, $\otimes_{(3,2,1)}$ on the set Q as follows: $a \otimes b = c$ if and only if

$$\begin{split} a \otimes_{_{(1,2,3)}} b &= c \;, \;\; a \otimes_{_{(1,3,2)}} c &= b \;, \;\; b \otimes_{_{(2,1,3)}} a &= c \;, \\ b \otimes_{_{(2,3,1)}} c &= a \;, \;\; c \otimes_{_{(3,1,2)}} a &= b \;, \;\; c \otimes_{_{(3,2,1)}} b &= a \;. \end{split}$$

These six (not necessarily distinict) quasigroups $(Q, \bigotimes_{(i,j,k)})$, where $\{i, j, k\} = \{1, 2, 3\}$ are called the conjugates of (Q, \bigotimes) . As the multiplication table of a quasigroup (Q, \bigotimes) defines a latin square which is *L*, then these six latin squares defined by the multiplication tables of its conjugates $(Q, \bigotimes_{(i,j,k)})$ are called the conjugates of *L*.

Two latin squares of order v, $L = (l_{ij})$ and $M = (m_{ij})$ are said to be orthogonal if their superposition produces exactly v^2 distinct ordered pairs, that is

$$|\{(l_{ij}, m_{ij}): 1 \le i, j \le v\}| = v^2$$
.

If the superposition produces r distinct ordered

pairs, that is

$$|\{(l_{ij}, m_{ij}): 1 \le i, j \le v\}| = r$$
,

then L and M are said to be r-orthogonal. Belyavs-

Received date: 2009-09-15. JOURNAL OF NINGBO UNIVERSITY (NSEE): http://3xb.nbu.edu.cn

Foundation item: Supported by the National Natural Science Foundation of China (60873267); Zhejiang Provincial Natural Science Foundation (Y607026). The first author's biography: ZHANG Jin-tao (1985-), male, Weifang Shandong, graduate student for a Master's degree, research domain: combination design. E-mail: zhangjintao08@gmail.com

kaya^[1-3] first discussed the practical utilization of *r*-orthogonal latin squares in coding theory and some problems raised thereby, and systematically treated the following question. For which integers *v* and *r* does a pair of *r*-orthogonal latin squares of order *v* exist? Evidently, $v \le r \le v^2$. In papers by Colbourn and Zhu^[4], Zhu and Zhang^[5-6], this question has been completely answered. And for the existence of (v+1)-MOLS(v) and (v^2-1) -MOLS(v), the answer is negative. From [6, Theorem 2.1], we have the following result.

Theorem 1 There exists no r-MOLS(v) with v and r shown in Table 1.

Table 1The genuine exception of r -MOLS(v)

order v	genuine exceptions of r
2	4
3	5, 6, 7
4	7, 10, 11, 13, 14
5	8, 9, 20, 22, 23
6	33, 36

If *M* is the transpose ((2,1,3)-conjugate) of *L*, then *L* is said to be *r*-self-orthogonal. The spectrum of *r*-self-orthogonal latin squares (*r*-SOLS for short) have almost completely determined by Xu and Chang^[7-8]. The following result is from [8, Theorem 6.2].

Theorem 2 There exists no r-SOLS(v) with v and r shown in Table 2.

Table 2The genuine exception of *r*-SOLS(*v*)

order v	genuine exceptions of r
2	4
3	5, 6, 7, 9
4	6, 7, 8, 10, 11, 12, 13, 14
5	8, 9, 12, 16, 18, 20, 22, 23
6	32, 33, 34, 36
7	46

If M is the (3,2,1)-conjugate of L, then L is said

to be (3,2,1)-conjugate *r*-orthogonal and denoted by (3,2,1)-*r*-COLS(ν). It is much more difficult to determine the spectrum of (3,2,1)-*r*-COLS than that of *r*-MOLS and *r*-SOLS. By exhaustive computer search, we have the following nonexistence result.

Theorem 3 There exists no (3,2,1)-*r*-COLS(*v*) with *v* and *r* shown in Table 3.

Table 3The genuine exception of (3,2,1)-r-COLS(v)

order v	genuine exceptions of r				
2	4				
3	5, 6, 7				
4	6, 7, 9, 10, 11, 13, 14				
5	7, 8, 9, 10, 12, 14, 18, 20, 21, 22, 23				
6	8, 9, 11, 13, 31, 32, 33, 34, 36				
7	9, 10, 12, 14, 16, 45, 46				
8	10, 11, 13, 15, 17, 61				

For the existence of (3,2,1)-*r*-COLS(*v*) with $r \in \{v+1, v^2 - 1\}$, the answer is negative according to the spectrum of *r*-MOLS(*v*). In this paper, we shall show the nonexistence of (3,2,1)-*r*-COLS(*v*) for $r \in \{v+2,v+3,v+5\}$.

1 The Nonexistence of (3,2,1)-*r*-COLS(*v*) for $r \in \{v+2,v+3,v+5\}$

Suppose $L = (l_{ij})_{v \times v}$ is a (3,2,1)-*r*-COLS(*v*), $M = (m_{ij})_{v \times v}$ is the (3,2,1)-conjugate of *L*. Let $P = \{(l_{ij}, m_{ij}): 1 \le i < j \le v\}$. It is obvious that |P| = r. We call *P* the (3,2,1)-DOP set (distinct ordered pairs set) of *L*. In this section, we always suppose that every latin square of order *v* is based on set $\{1, 2, \dots, v\}$.

Lemma 1 For any positive integer v, if $L = (l_{ij})_{v \times v}$ is a (3,2,1)-*r*-COLS(v) with (3,2,1)-DOP set P, then P contains $\{(i,i): 1 \le i \le v\}$.

Proof Let $L = (l_{ij})_{v \times v}$ be a latin square and $M = (m_{ij})_{v \times v}$ be the (3,2,1)-conjugate of *L*. For any $i \in \{1, 2, \dots, v\}$, there exists $j \in \{1, 2, \dots, v\}$ such that

 $l_{ii} = i$ since L is a latin square.

Furthermore, since *M* is the (3,2,1)-conjugate of *L*, we have $m_{ij} = i$ and $(i,i) \in P = \{(l_{ij}, m_{ij}) : 1 \le i, j \le v\}$.

Lemma 2 Let $L = (l_{ij})_{v \times v}$ be a latin square and $M = (m_{ij})_{v \times v}$ be the (3,2,1)-conjugate of *L*. Let σ_p and τ_p be permutations associated with the *p*th columns of *L* and *M*, respectively:

$$\sigma_{p} = \begin{pmatrix} 1 & 2 & 3 & \cdots & v \\ l_{1p} & l_{2p} & l_{3p} & \cdots & l_{vp} \end{pmatrix},$$

$$\tau_{p} = \begin{pmatrix} 1 & 2 & 3 & \cdots & v \\ m_{1p} & m_{2p} & m_{3p} & \cdots & m_{vp} \end{pmatrix}$$

Then $\tau_p = \sigma_p^{-1}$. **Proof** It is easy to see from the definition of

(3,2,1)-conjugate.

Definition 1 Write σ_p in Lemma 2 into disjoint cycles:

$$\sigma_p = (x_1^{(p)}) \cdots (x_{r_{l_p}}^{(p)})(y_{11}^{(p)}y_{12}^{(p)}) \cdots (y_{r_{l_n}1}^{(p)}y_{r_{l_n}2}^{(p)}) \cdots (z_{11}^{(p)}z_{12}^{(p)}\cdots z_{l_v}^{(p)})$$

then,

$$\tau_{p} = (x_{1}^{(p)}) \cdots (x_{n_{p}}^{(p)}) (y_{11}^{(p)} y_{12}^{(p)}) \cdots (y_{n_{2}p}^{(p)} y_{n_{2}p}^{(p)}) \cdots (z_{1\nu}^{(p)} \cdots z_{12}^{(p)} z_{11}^{(p)}) .$$

The type of the two permutations is defined as $1^{r_{1p}} 2^{r_{2p}} \cdots v^{r_{vp}}$, where $r_{1p} + 2r_{2p} + \cdots + vr_{vp} = v$.

Let $P_p = \{(l_{ij}, m_{ij}): 1 \le i, j \le v\} \setminus \{(i, i): 1 \le i \le v\}$. It is easy to see that

$$|P_p| = \sum_{l=3}^{\nu} (l \cdot r_{lp}), \quad p = 1, 2, \dots, \nu.$$

Combined with Lemma 1, we have the following theorem.

Theorem 4 For any positive integer v, there exists no (3,2,1)-(v+2)-COLS(v).

Theorem 5 For any positive integer v, there exists no (3,2,1)-(v+3)-COLS(v).

Proof It is obviously true for $1 \le v \le 2$. We suppose that $v \ge 3$ in the following of this proof.

Let *L* be a (3,2,1)-(v+3)-COLS(v) and *M* be the (3,2,1)-conjugate of *L*. Besides the pairs in $\{(i,i): 1 \le i \le v\}$, there are only three distinct ordered pairs in the (3,2,1)-DOP set of *L*. Then there exists some $p \in \{1,2,\dots,v\}$ such that there is only one cycle of length 3 in σ_p as defined in Definition 1. Let (ijk) be the cycle of length 3. From the definition of (3,2,1)-conjugate, (ikj) must be a cycle in the permutation associated with the *p*th column of *M*. That is $l_{ip} = j$, $l_{jp} = k$, $l_{kp} = i$, $m_{ip} = k$, $m_{jp} = i$, $m_{kp} = j$. They produce three distinct ordered pairs (j,k), (k,i) and (i,j) as shown in Figure 1, where $\otimes L$ and $\otimes M$ are the multiplication tables of quasigroups corresponding to *L* and *M*, respectively.

	р	q	_		р	q
i	j	k	-	i	k	i/k
j	k			j	i	
k	i			h	j	i
	$\otimes L$				$\otimes M$	

Fig.1 The multiplication tables of quasigroups corresponding to *L* and *M*

The sidelines of $\otimes L$ and $\otimes M$ are the row indexes of L and M, respectively. The headlines of $\otimes L$ and $\otimes M$ are the column indexes of L and M. For the *i*th row of L, there exists some $q \in \{1, 2, \dots, v\}$. such that $l_{iq} = k$. From the definition of (3,2,1)conjugate we have $m_{kq} = i$. As three distinct ordered pairs (j,k), (k,i) and (i, j) have already occurred, m_{iq} must be *i* or *k*. If $m_{iq} = i$, it is in contradiction to $m_{kq} = i$. If $m_{iq} = k$, it is in contradiction to $m_{in} = k$. This completes the proof.

Lemma 3 Let *L* be a latin square of order *v*, σ_1 and σ_2 be two cycles in permutations associated with columns of *L* as defined in Definition 1. Denote the (3,2,1)-DOP sets associated with σ_1 and σ_2 by P_1 and P_2 , respectively. (1) If σ_1 and σ_2 have the same length 3 and $|P_1 \cap P_2| = 1$, then $\sigma_1 = \sigma_2$.

(2) If σ_1 and σ_2 have the same length 4 and $|P_1 \cap P_2| = 3$, then $\sigma_1 = \sigma_2$.

(3) If the length of σ_1 is 4 and the length of σ_2 is 3, then $|P_1 \cap P_2| \neq 2$.

Proof (1) Let $\sigma_1 = (ijk)$. From the definition of (3,2,1)-conjugate, σ_1 produces three distinct ordered pairs (j,k), (k,i) and (i,j). Suppose $P_1 \cap P_2 = \{(i,j)\}$ and $\sigma_2 = (ijm)$. From the definition of latin square, we get $\sigma_1 = \sigma_2$.

(2) For any three distinct ordered pairs in P_1 , as they are not in $\{(i,i): 1 \le i \le v\}$, they must be produced by four different elements in $\{1, 2, \dots, v\}$, and each element occurs in two pairs. It's easy to see that $P_1 = P_2$ and $\sigma_1 = \sigma_2$.

(3) Any two distinct ordered pairs in P_1 are formed by two or four different elements, and any two distinct ordered pairs in P_2 are formed by three different elements.

Theorem 6 For any positive integer v, there exists no (3,2,1)-(v+5)-COLS(v).

Proof It is obviously true for $1 \le v \le 2$. The nonexistence of (3,2,1)-8-COLS(3) and (3,2,1)-9-COLS(4) are from the nonexistence of $(v^2 - 1)$ -MOLS(v) and Theorem 3, respectively. We suppose that $v \ge 5$ in the following of this proof. Suppose $L = (l_{ij})$ is a (3,2,1)-(v+5)-COLS(v), and $L' = (l'_{ij})$ is the (3,2,1)-conjugate of L. Then $|\{(l_{ij},l'_{ij}):l_{ij} \ne l'_{ij}, 1\le i, j \le v\}|=5$. From Lemma 3, we know that the five distinct ordered pairs must occur in the same column of the superposition of L and L', and be produced by a cycle of length 5 in σ_p as defined in Definition 1 for some $p \in \{1, 2, \dots, v\}$. Let (ijkmn) be the cycle of length 5. From the definition of (3,2,1)-conjugate, (inmkj) must be a cycle in the

permutation associated with the *p*th column of *L'*. That is $l_{ip} = j$, $l_{jp} = k$, $l_{kp} = m$, $l_{mp} = n$, $l_{np} = i$, $l'_{ip} = n$, $l'_{np} = m$, $l'_{mp} = k$, $l'_{kp} = j$, $l'_{jp} = i$. They produce five distinct ordered pairs (j,n), (k,i), (m, j), (n, k) and (i, m) as shown in Figure 2, where $\otimes L$ and $\otimes L'$ are the multiplication tables of quasigroups corresponding to *L* and *L'*, respectively.

	р	q		р	q
i	j	n	i	п	n/k
j	k		j	i	
k	т	i	k	j	т
т	п	k	т	k	i/k
n	i		n	т	i
	$\otimes L$			$\otimes L'$	

Fig.2 The multiplication tables of quasigroups corresponding to *L* and *L'*

The sidelines of $\otimes L$ and $\otimes L'$ are the row indexes of L and L', respectively. The headlines of $\otimes L$ and $\otimes L'$ are the column indexes of L and L'. For the *i*th row of L, there exists some $q \in$ $\{1,2,\dots,v\}$ such that $l'_{iq} = n$. From the definition of (3,2,1)-conjugate we have $l'_{nq} = i$. Since the five distinct ordered pairs are (j,n), (k,i), (m,j), (n,k) and (i,m), l'_{iq} must be n or k. If $l'_{iq} = n$, it is in contradiction to $l'_{ip} = n$. If $l'_{iq} = k$, from the definition of (3,2,1)-conjugate, $l_{kq} = i$ and then we have $l'_{kq} = m$, $l_{mq} = k$. Then l'_{mq} must be i or k. If $l'_{mq} = i$, it is in contradiction to $l'_{iq} = k$. This completes the proof.

2 Remarks

From Table 3 in Theorem 3, it's easy to see that there exists no (3,2,1)-(v+7)-COLS(v) for $v \in \{4,5,6,7, 8\}$. For the existence of (3,2,1)-(v+7)-COLS(v), the answer may be negative also.

2010

Suppose that *L* and *M* are *r*-orthogonal latin squares of order *v*. If *M* is the (1,3,2)- conjugate of *L*, then *L* is said to be (1,3,2)- conjugate *r*-orthogonal and denoted by (1,3,2)-*r*-COLS(*v*). It is obvious that if a latin square *L* is (3,2,1)-conjugate *r*-orthogonal, then its transpose L^{T} is (1,3,2)-conjugate *r*-orthogonal. Combined with Theorems 4, 5 and 6, we have the following theorem.

Theorem 7 For any positive integer *v*, there exist no (3,2,1)-*r*-COLS(*v*) and (1,3,2)-*r*-COLS(*v*) for $r \in \{v + 2, v + 3, v + 5\}$.

References:

- Belyavskaya G B. *r*-orthogonal quasigroups I[J]. Mathematics Issled, 1976, 39:32-39.
- [2] Belyavskaya G B. *r*-orthogonal quasigroups II[J]. Mathematics Issled, 1977, 43:39-49.

- [3] Belyavskaya G B. *r*-orthogonal latin squares[M]//Denes J, Keedwell A D. Latin Squares: New Developments, North-Holland, Amsterdam, Elsevier Press, 1992:169-202.
- [4] Colbourn C J, Zhu L. The spectrum of *r*-orthogonal latin squares[M]//Colbourn C J, Mahmoodian E S. Dordrecht, Combinatorics Advances, Kluwer Academic Press, 1995: 49-75.
- [5] Zhu Lie, Zhang Haotao. A few more *r*-orthogonal latin squares [J]. Discrete Math, 2001, 238:183-191.
- [6] Zhu Lie, Zhang Haotao. Completing the Spectrum of *r*-orthogonal latin Squares[J]. Discrete Math, 2003, 268: 343-349.
- [7] Xu Yunqing, Chang Yanxun. On the spectrum of *r*-selforthogonal latin squares[J]. Discrete Math, 2004, 279: 479-498.
- [8] Xu Yunqing, Chang Yanxun. Existence of *r*-self-orthogonal latin squares[J]. Discrete Math, 2006, 306:124-146.

v 阶(3,2,1)-共轭 r-正交拉丁方在集合 r∈ {v+2,v+3,v+5}上的不存在性

张金涛, 徐允庆

(宁波大学 理学院,浙江 宁波 315211)

摘要: 2 个 v 阶拉丁方, $L = (l_{ij})$ 和 $M = (m_{ij})$ 被称为是 r-正交的,如果把它们重叠起来可以得到恰好 r 个不同的有序元素偶,即 $|\{(l_{ij},m_{ij}):1 \le i, j \le v\}| = r$,记为 r-MOLS(v).r-MOLS(v)在 $r \in \{v+1,v^2-1\}$ 上的不存在性已经得到证明.如果 $M \in L$ 的(3,2,1)-共轭,可认为 $L \in (3,2,1)$ -共轭 r-正交的,可记为(3,2,1)-r-COLS(v).并且证明了(3,2,1)-r-COLS(v)在 $r \in \{v+2,v+3,v+5\}$ 上的不存在性.

关键词: 拉丁方; r-正交; (3,2,1)-共轭

中图分类号: O144 文献标识码: A

(责任编辑 章践立)