文章编号:1001-5132 2010 01-0118-05

Nonexistence of (3,2,1)-conjugate *r*-orthogonal Latin Squares of Order *v* for $r \in \{v+2, v+3, v+5\}$

ZHANG Jin-tao, XU Yun-qing

(Faculty of Science, Ningbo University, Ningbo 315211, China)

Abstract: Two latin squares of order $v, L = (l_{ii})$ and $M = (m_{ii})$ are called to be *r*-orthogonal if their superposition produces exactly *r* distinct ordered pairs, that is $|((l_{ij}, m_{ij}) : 1 \le i, j \le v) | = r$, which is denoted by *r*-MOLS(*v*). It has been proved that there does not exist an *r*-MOLS(*v*) for $r \in \{v + 1, v^2 - 1\}$. If *M* is the (3,2,1)-conjugate of *L*, then *L* is called to be (3,2,1)-conjugate *r*-orthogonal, as denoted by (3,2,1)-*r*-COLS(*v*). In this paper, the nonexistence of $(3,2,1)$ -*r*-COLS(*v*) for $r \in \{v+2,v+3,v+5\}$ is proved.

Key words: latin square; *r*-orthogonal; (3,2,1)-conjugate **CLC number:** O144 **Document code:** A

0 Introduction

A quasigroup is an ordered pair (Q, \otimes) , where Q is a set and \otimes is a binary operation on *Q*, such that the equations $a \otimes x = b$ and $y \otimes a = b$ are uniquely solvable for every pair of elements *a b*, in *Q*. It's fairly well know that the multiplication table of a quasigroup defines a latin square, that is, a latin square can be viewed as the multiplication table of a quasigroup with the headline and sideline removed.

If (Q, \otimes) is a quasigroup, we may define six binary operations $\otimes_{(1,2,3)}$, $\otimes_{(1,3,2)}$, $\otimes_{(2,1,3)}$, $\otimes_{(2,3,1)}$, ⊗_(3,1,2), ⊗_(3,2,1) on the set *Q* as follows: $a \otimes b = c$ if and only if

$$
a \otimes_{(1,2,3)} b = c
$$
, $a \otimes_{(1,3,2)} c = b$, $b \otimes_{(2,1,3)} a = c$,
\n $b \otimes_{(2,3,1)} c = a$, $c \otimes_{(3,1,2)} a = b$, $c \otimes_{(3,2,1)} b = a$.

These six (not necessarily distinict) quasigroups $(Q, \otimes_{(i, j,k)})$, where $\{i, j, k\} = \{1, 2, 3\}$ are called the conjugates of (Q, \otimes) . As the multiplication table of a quasigroup (Q, \otimes) defines a latin square which is *L*, then these six latin squares defined by the multiplication tables of its conjugates $(Q, \otimes_{(i, j,k)})$ are called the conjugates of *L*.

Two latin squares of order *v*, $L = (l_{ij})$ and $M = (m_{ii})$ are said to be orthogonal if their superposition produces exactly v^2 distinct ordered pairs, that is

$$
|\{(l_{ij},m_{ij}):1\le i,j\le \nu\}|= \nu^2.
$$

If the superposition produces *r* distinct ordered

pairs, that is

$$
|\{(l_{ij},m_{ij}):1\le i,j\le v\}|=r,
$$

then *L* and *M* are said to be *r*-orthogonal. Belyavs-

Received date: 2009-09-15. JOURNAL OF NINGBO UNIVERSITY (NSEE): http://3xb.nbu.edu.cn

Foundation item: Supported by the National Natural Science Foundation of China (60873267); Zhejiang Provincial Natural Science Foundation (Y607026). **The first author's biography:** ZHANG Jin-tao (1985-), male, Weifang Shandong, graduate student for a Master's degree, research domain: combination design. E-mail: zhangjintao08@gmail.com

kaya $^{[1-3]}$ first discussed the practical utilizetion of *r*-orthogonal latin squares in coding theory and some problems raised thereby, and systematically treated the following question. For which integers ν and r does a pair of *r*-orthogonal latin squares of order *v* exist? Evidently, $v \le r \le v^2$. In papers by Colbourn and $Zhu^{[4]}$, Zhu and $Zhang^{[5-6]}$, this question has been completely answered. And for the existence of $(v+1)$ -MOLS (v) and (v^2-1) -MOLS (v) , the answer is negative. From [6, Theorem 2.1], we have the following result.

Theorem 1 There exists no r -MOLS(v) with v and *r* shown in Table 1.

Table 1 The genuine exception of $r \cdot \text{MOLS}(v)$

order ν	genuine exceptions of r
2	
3	5, 6, 7
	7, 10, 11, 13, 14
5	8, 9, 20, 22, 23
6	33, 36

If *M* is the transpose $((2,1,3)$ -conjugate) of *L*, then *L* is said to be *r*-self-orthogonal. The spectrum of *r*-self-orthogonal latin squares (*r*-SOLS for short) have almost completely determined by Xu and Chang^[7-8]. The following result is from [8, Theorem] 6.2].

Theorem 2 There exists no r -SOLS(v) with v and *r* shown in Table 2.

Table 2 The genuine exception of r **-SOLS** (v)

order ν	genuine exceptions of r
\mathfrak{D}	
3	5, 6, 7, 9
4	6, 7, 8, 10, 11, 12, 13, 14
5	8, 9, 12, 16, 18, 20, 22, 23
6	32, 33, 34, 36
	46

If *M* is the (3,2,1)-conjugate of *L*, then *L* is said

to be (3,2,1)-conjugate *r*-orthogonal and denoted by $(3,2,1)$ -r-COLS(*v*). It is much more difficult to determine the spectrum of (3,2,1)-*r*-COLS than that of *r*-MOLS and *r*-SOLS. By exhaustive computer search, we have the following nonexistence result.

Theorem 3 There exists no $(3.2.1)$ -r-COLS (v) with *v* and *r* shown in Table 3.

Table 3 The genuine exception of (3,2,1)-*r***-COLS(***v***)**

order ν	genuine exceptions of r
\mathfrak{D}	4
3	5, 6, 7
4	6, 7, 9, 10, 11, 13, 14
5	7, 8, 9, 10, 12, 14, 18, 20, 21, 22, 23
6	8, 9, 11, 13, 31, 32, 33, 34, 36
7	9, 10, 12, 14, 16, 45, 46
8	10, 11, 13, 15, 17, 61

For the existence of $(3,2,1)$ -r-COLS(v) with $r \in \{v+1, v^2-1\}$, the answer is negative according to the spectrum of r -MOLS(v). In this paper, we shall show the nonexistence of $(3,2,1)$ -*r*-COLS(*v*) for $r \in$ {*v*+2,*v*+3,*v*+5}.

1 The Nonexistence of (3,2,1)-*r***-COLS(***v***) for** *r*∈**{***v***+2,***v***+3,***v***+5}**

Suppose $L = (l_{ii})_{v \times v}$ is a (3,2,1)-*r*-COLS(*v*), $M =$ $(m_{ii})_{y \times y}$ is the (3,2,1)-conjugate of *L*. Let $P = \{(l_{ii}, j_{ii})\}$ m_{ii}):1 $\le i < j \le v$ }. It is obvious that $|P| = r$. We call *P* the (3,2,1)-DOP set (distinct ordered pairs set) of *L*. In this section, we always suppose that every latin square of order *v* is based on set $\{1, 2, \dots, v\}$.

Lemma 1 For any positive integer *v*, if $L =$ $(l_{ii})_{v \vee v}$ is a (3,2,1)-r-COLS(*v*) with (3,2,1)-DOP set *P*, then *P* contains $\{(i, i) : 1 \le i \le v\}$.

Proof Let $L = (l_{ii})_{i \times i}$ be a latin square and $M = (m_{ii})_{v \times v}$ be the (3,2,1)-conjugate of *L*. For any $i \in \{1, 2, \dots, v\}$, there exists $j \in \{1, 2, \dots, v\}$ such that $l_{ii} = i$ since *L* is a latin square.

Furthermore, since M is the $(3,2,1)$ -conjugate of *L*, we have $m_{ii} = i$ and $(i, i) \in P = \{(l_{ii}, m_{ii}) : 1 \le i,$ *j*≤*v*}.

Lemma 2 Let $L = (l_{ii})_{v \times v}$ be a latin square and $M = (m_{ii})_{ii}$ be the (3,2,1)-conjugate of *L*. Let σ _{*p*} and τ _{*p*} be permutations associated with the *p*th columns of *L* and *M*, respectively:

$$
\sigma_p = \begin{pmatrix} 1 & 2 & 3 & \cdots & v \\ l_{1p} & l_{2p} & l_{3p} & \cdots & l_{vp} \end{pmatrix},
$$

\n
$$
\tau_p = \begin{pmatrix} 1 & 2 & 3 & \cdots & v \\ m_{1p} & m_{2p} & m_{3p} & \cdots & m_{vp} \end{pmatrix}.
$$

Then $\tau_p = \sigma_p^{-1}$.

Proof It is easy to see from the definition of $(3,2,1)$ -conjugate.

Definition 1 Write σ_p in Lemma 2 into disjoint cycles:

$$
\sigma_p = (x_1^{(p)}) \cdots (x_{n_p}^{(p)}) (y_{11}^{(p)}) y_{12}^{(p)}) \cdots \n(y_{n_p}^{(p)}) y_{n_p}^{(p)}) \cdots (z_{11}^{(p)} z_{12}^{(p)} \cdots z_{1v}^{(p)}) ,
$$

then,

$$
\tau_p = (x_1^{(p)}) \cdots (x_{n_p}^{(p)}) (y_{11}^{(p)}) y_{12}^{(p)}) \cdots \n(y_{r_{2p}}^{(p)}) y_{r_{2p}}^{(p)}) \cdots (z_{1v}^{(p)} \cdots z_{12}^{(p)} z_{11}^{(p)}) .
$$

The type of the two permutations is defined as $1^{r_{1p}} 2^{r_{2p}} \cdots v^{r_{vp}}$, where $r_{1p} + 2r_{2p} + \cdots + \nu r_{vp} = \nu$.

Let $P_p = \{(l_{ij}, m_{ij}) : 1 \le i, j \le v\} \setminus \{(i, i) : 1 \le i \le j\}$ *v*}. It is easy to see that

$$
|P_p| = \sum_{l=3}^{v} (l \cdot r_{lp}), \quad p = 1, 2, \dots, v.
$$

Combined with Lemma 1, we have the following theorem.

Theorem 4 For any positive integer v , there exists no $(3,2,1)-(v+2)-COLS(v)$.

Theorem 5 For any positive integer v , there exists no $(3,2,1)-(v+3)-COLS(v)$.

Proof It is obviously true for $1 \leq v \leq 2$. We suppose that $v \geq 3$ in the following of this proof. Let *L* be a $(3,2,1)-(v+3)-COLS(v)$ and *M* be the $(3,2,1)$ -conjugate of *L*. Besides the pairs in $\{(i,i)\}$: $1 \le i \le v$, there are only three distinct ordered pairs in the (3,2,1)-DOP set of *L* . Then there exists some $p \in \{1, 2, \dots, v\}$ such that there is only one cycle of length 3 in σ _{*p*} as defined in Definition 1. Let (*ijk*) be the cycle of length 3. From the definition of $(3,2,1)$ -conjugate, (ikj) must be a cycle in the permutation associated with the *p*th column of *M*. That is $l_{ip} = j$, $l_{jp} = k$, $l_{kp} = i$, $m_{ip} = k$, $m_{jp} = i$, $m_{kp} = j$. They produce three distinct ordered pairs (j, k) , (k, i) and (i, j) as shown in Figure 1, where ⊗*L* and ⊗*M* are the multiplication tables of quasigroups corresponding to *L* and *M*, respectively.

Fig.1 The multiplication tables of quasigroups corresponding to *L* **and** *M*

The sidelines of ⊗*L* and ⊗*M* are the row indexes of *L* and *M*, respectively. The headlines of ⊗*L* and ⊗*M* are the column indexes of *L* and *M*. For the *i*th row of *L*, there exists some $q \in \{1, 2, \dots, v\}$. such that $l_{ia} = k$. From the definition of (3,2,1)conjugate we have $m_{kq} = i$. As three distinct ordered pairs (j, k) , (k, i) and (i, j) have already occurred, m_{iq} must be *i* or *k*. If $m_{iq} = i$, it is in contradiction to $m_{kq} = i$. If $m_{iq} = k$, it is in contradiction to $m_{in} = k$. This completes the proof.

Lemma 3 Let L be a latin square of order v , σ_1 and σ_2 be two cycles in permutations associated with columns of *L* as defined in Definition 1. Denote the (3,2,1)-DOP sets associated with σ_1 and σ_2 by P_1 and P_2 , respectively.

(1) If σ_1 and σ_2 have the same length 3 and $|P_1 \cap P_2| = 1$, then $\sigma_1 = \sigma_2$.

(2) If σ_1 and σ_2 have the same length 4 and $|P_1 \cap P_2| = 3$, then $\sigma_1 = \sigma_2$.

(3) If the length of σ_1 is 4 and the length of σ_2 is 3, then $|P_1 \cap P_2| \neq 2$.

Proof (1) Let $\sigma_1 = (ijk)$. From the definition of (3,2,1)-conjugate, σ_1 produces three distinct ordered pairs (j, k) , (k, i) and (i, j) . Suppose $P_1 \cap P_2 = \{(i, j)\}$ and $\sigma_2 = (ijm)$. From the definition of latin square, we get $\sigma_1 = \sigma_2$.

(2) For any three distinct ordered pairs in P_1 , as they are not in $\{(i,i): 1 \le i \le v\}$, they must be produced by four different elements in $\{1, 2, \dots, v\}$, and each element occurs in two pairs. It's easy to see that $P_1 = P_2$ and $\sigma_1 = \sigma_2$.

(3) Any two distinct ordered pairs in P_1 are formed by two or four different elements, and any two distinct ordered pairs in P_2 are formed by three different elements.

Theorem 6 For any positive integer *v*, there exists no $(3,2,1)-(v+5)$ -COLS (v) .

Proof It is obviously true for $1 \le v \le 2$. The nonexistence of $(3,2,1)$ -8-COLS (3) and $(3,2,1)$ -9-COLS(4) are from the nonexistence of $(v^2 - 1)$ -MOLS(*v*) and Theorem 3, respectively. We suppose that $v \ge 5$ in the following of this proof. Suppose $L = (l_{ii})$ is a (3,2,1)-(*v*+5)-COLS(*v*), and $L' = (l'_{ii})$ is the (3,2,1)-conjugate of *L*. Then $|\{(l_{ii}, l'_{ii}): l_{ii} \neq l'_{ii},\}$ $1 \le i, j \le v$ } = 5. From Lemma 3, we know that the five distinct ordered pairs must occur in the same column of the superposition of *L* and *L'* , and be produced by a cycle of length 5 in σ_p as defined in Definition 1 for some $p \in \{1, 2, \dots, v\}$. Let (*ijkmn*) be the cycle of length 5. From the definition of $(3,2,1)$ -conjugate, $(immkj)$ must be a cycle in the permutation associated with the *p*th column of *L'* . That is $l_{ip} = j$, $l_{ip} = k$, $l_{kp} = m$, $l_{mp} = n$, $l_{np} = i$, $l'_{ip} = n$, $l'_{np} = m$, $l'_{mp} = k$, $l'_{kp} = j$, $l'_{ip} = i$. They produce five distinct ordered pairs (j, n) , (k, i) , (m, i) , (n, k) and (i, m) as shown in Figure 2, where ⊗*L* and ⊗*L'* are the multiplication tables of quasigroups corresponding to *L* and *L'*, respectively.

Fig.2 The multiplication tables of quasigroups corresponding to *L* **and** *L'*

The sidelines of ⊗*L* and ⊗*L'* are the row indexes of *L* and *L'* , respectively. The headlines of ⊗*L* and ⊗*L'* are the column indexes of *L* and *L'*. For the *i*th row of *L*, there exists some $q ∈$ $\{1, 2, \dots, v\}$ such that $l'_{ia} = n$. From the definition of (3,2,1)-conjugate we have $l'_{nq} = i$. Since the five distinct ordered pairs are (j, n) , (k, i) , (m, j) , (n,k) and (i,m) , l'_{iq} must be *n* or *k*. If $l'_{iq} = n$, it is in contradiction to $l'_{ip} = n$. If $l'_{iq} = k$, from the definition of (3,2,1)-conjugate, $l_{kq} = i$ and then we have $l'_{kq} = m$, $l_{mq} = k$. Then l'_{mq} must be *i* or *k*. If $l'_{mq} = i$, it is in contradiction to $l'_{nq} = i$. If $l'_{mq} = k$, it is in contradiction to $l'_{iq} = k$. This completes the proof.

2 Remarks

From Table 3 in Theorem 3, it's easy to see that there exists no $(3,2,1)-(v+7)-COLS(v)$ for $v \in \{4,5,6,7,$ 8}. For the existence of $(3,2,1)-(v+7)-COLS(v)$, the answer may be negative also.

Suppose that *L* and *M* are *r*-orthogonal latin squares of order *v*. If *M* is the (1,3,2)- conjugate of *L*, then *L* is said to be $(1,3,2)$ - conjugate *r*-orthogonal and denoted by $(1,3,2)$ -r-COLS (v) . It is obvious that if a latin square *L* is (3,2,1)-conjugate *r*-orthogonal, then its transpose L^T is (1,3,2)-conjugate *r*-orthogonal. Combined with Theorems 4, 5 and 6, we have the following theorem.

Theorem 7 For any positive integer *v*, there exist no (3,2,1)-*r*-COLS(*v*) and (1,3,2)-*r*-COLS(*v*) for $r \in \{v + 2, v + 3, v + 5\}.$

References:

- [1] Belyavskaya G B. *r*-orthogonal quasigroups I[J]. Mathematics Issled, 1976, 39:32-39.
- [2] Belyavskaya G B. *r*-orthogonal quasigroups II[J]. Mathematics Issled, 1977, 43:39-49.
- [3] Belyavskaya G B. *r*-orthogonal latin squares[M]//Denes J, Keedwell A D. Latin Squares: New Developments, North-Holland, Amsterdam, Elsevier Press, 1992:169- 202.
- [4] Colbourn C J, Zhu L. The spectrum of *r*-orthogonal latin squares[M]//Colbourn C J, Mahmoodian E S. Dordrecht, Combinatorics Advances, Kluwer Academic Press, 1995: 49-75.
- [5] Zhu Lie, Zhang Haotao. A few more *r*-orthogonal latin squares [J]. Discrete Math, 2001, 238:183-191.
- [6] Zhu Lie, Zhang Haotao. Completing the Spectrum of *r*-orthogonal latin Squares[J]. Discrete Math, 2003, 268: 343-349.
- [7] Xu Yunqing, Chang Yanxun. On the spectrum of *r*-selforthogonal latin squares[J]. Discrete Math, 2004, 279: 479-498.
- [8] Xu Yunqing, Chang Yanxun. Existence of *r*-self-orthogonal latin squares[J]. Discrete Math, 2006, 306:124- 146.

$$
v \quad (3,2,1)- \quad r-
$$

$$
r \in \{v+2,v+3,v+5\}
$$

中图分类号**:** O144 文献标识码**:** A

$$
\begin{array}{cccc}\n & 12 & v & L = (l_{ij}) & M = (m_{ij}) & r - 1, \\
& 1315211 & & r - 1, \\
& 141 & & r - 1, \\
& 15211 & & r - 1,
$$