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Abstract: The higher integrality for the very weak solutions of the non-homogeneous A-harmonic 

equation ( d )d A x g u d h∗ ∗, + =  is obtained using the result of Riesz transforms and interpolation.  
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Let ( )l l nR∧ = ∧  denote the linear space of l - 

covectors in dnR ≥ , 1,2, ,l n= ⋅⋅ ⋅ . For 0l =  we 

put 0 ( )n nR R∧ = . Also, ( ) 0l l nR∧ = ∧ =  if 0l <  or 

l n> . This is an inner product space of dimension 
l
nC . A differential form of degree l  on nR  is 

simply a function or Schwarz distribution on nR  

with values in l∧ . We shall consider a nonlinear 

mapping : ( ) ( )n l n l nA R R R×∧ → ∧ . 

Which satisfies the usual measurability condi- 

tions (Carathéodory conditions) and for some 1<  

p < ∞ , the following conditions hold: 

(i) the monotonicity inequality  
2 2( , ) ( , ), | | (| |) .pA x A xξ ζ ξ ζ α ξ ζ ξ ζ −− − − +≥

 (ii) the Lipschitz type condition  
2( ) ( ) ( ) .pA x A xξ ζ β ξ ζ ξ ζ −| , − , | | − | | + |≤  

(iii) the homogeneity condition  
2( ) ( )pA x A xλξ λ λ ξ−, =| | , . 

For almost every ,x λ∈ ∈nR R  and all ,ξ ζ∈  

( ).l nR∧ The exponent 1p >  will determine the 

natural Sobolev class, denoted by 1
, ( , )p n l

d locW R −∧ , in 

which to consider the nonhomogeneous A-harmonic 

equation  

( d ) ,d A x g u d h∗ ∗, + =  (1) 

(see [1] for the definition of 1
, ( , )p n l

d locW R −∧  and 

other Sobolev classes of differential forms).  

Definition 1  For ( , )p n lg L R∈ ∧  and h∈   

( , )q n lL R ∧ with 1 / 1 / 1p q+ = , an A-harmonic tensor  
1

, ( , )p n l
d locu W R −∈ ∧  is a weak solution of (1) defined as  

( , d ),d ,d ,
n nR R

A x g u hφ φ+ =∫ ∫  (2) 

for all 1
0 ( , )n lC Rφ ∞ −∈ ∧ .  

Definition 2  A differential form , ( ,r n
d locu W R∈  

1)l−∧ , max{1, 1}r p−≥ , is called a weak A-harmonic 

tensor if it satisfies equation (1) in the distributional 

sense for ( , )r n lg L R∈ ∧  and /( 1) ( , )r p n lh L R−∈ ∧ , that 

is, the integral identity (2) holds for all φ∈  
/( 1) 1( , )r r p n lL R− + −∧ . 

Iwaniec T and Sbordone C showed in [2] the 

regularity result for the very weak solutions of the 
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equation  

div ( , ( )) 0A x u x∇ = . (3) 

They used the Hodge decomposition to build a 

test function, and obtained that there exist 1r =  

1( )r p Ω, and 2 2 ( )r r p Ω= ,  satisfying 11 r p< < <  

2r< < ∞ , such that every very weak solution u∈  
11 ( )r

locW Ω,  of equation (3) belongs to 21 ( )r
locu W Ω,∈ . 

Stroffolini B used the similar technique in [1] to 

obtain the regularity results for the very weak 

solutions of the homogeneous A-harmonic equation  

( d ) 0d A x u∗ , = .  (4) 

In the paper [3], Stroffolini Capone C, et al 

proved the similar results via Riesz transforms and 

interpolation. For other results on very weak solution, 

see [4-8]. Now, inspired by the paper [3], we obtain 

the following regularity theorem.  

Theorem 1  There exist exponent max{1 p, −  

1 11} ( )p p n p p< = , < and 2 2 ( )p p n p p= , > , such 

that for 1 2p r p s p≤ ≤ ≤ ≤ , ( , )s n lg L R∈ ∧  and 

h∈ /( 1) , )s p n lL R− ∧ , we have if 1( , )r n l
du W R −∈ ∧ ∩  

1 1( , )n l
locL R −∧ is weak A-harmonic, then ( ,s n

du W R∈  
1 1 1) ( , )l n l

locL R− −∧ ∩ ∧  as well and moreover  
( 1)d ( ),s s s pu C g h / −| | | | + | |∫ ∫n nR R

≤  (5) 

Then, u  is an A-harmonic tensor in the usual sense.  

1 Notations and Preliminary Results 

Throughout we use the notation of [9]. For the 

sake of completeness we list basic notions of exterior 

calculus. The direct sum 0( ) ( )n n l n
lR R=∧ = ⊕ ∧  is an 

exterior algebra with respect to the wedge product ∧ . 

We define the Hodge star operator :∗ ∧→ by the rule  

1 21 ne e e∗ = ∧ ∧ ⋅⋅⋅ ∧ , and , ( 1)α β β α α β∧∗ = ∧∗ = ∗ . 

For all , .α β ∈∧  the norm of .α ∈∧  is given 

by the formula 2 0| | , ( ) .a Rα α α α= = ∗ ∧∗ ∈∧ =  

The Hodge star is an isometric isomorphism on 

∧  with : l n l−∗ ∧ → ∧  and ( )( 1) : .l n l l l−∗∗ − ∧ →∧ . 

A differential l-form ω  on nR  is a locally 

integrable function or a Schwarz distribution on nR  

with values in ( )nR∧ . We denote the space of 

differential l-form by ( , ): D ′ ∧n lR . If 1 2, , , nx x x⋅ ⋅ ⋅  

denote the coordinate functions in nR , then the 

natural generators for the algebra of differential forms 

are the differentials 1 2d ,d , ,d nx x x⋅ ⋅ ⋅ . Thus each 

: ( )n l nR Rω →∧  can be written as  

( ) ( )dI I
I

x x xω ω= =∑  

1 2 1 2
( )d d d

l li i i i i ix x x xω ⋅⋅⋅ ∧ ∧ ⋅⋅ ⋅∧ ,∑  

where 
1 2

( )
li i i xω ⋅⋅⋅∑  are either functions or dis- 

tributions. We write ( , )p n lL R ∧  for the l-forms ( )xω  

with ( , )p
I Lω ∈ n nR R  for all ordered l  tuples I . 

Thus ( , )p n lL R ∧  is a Banach space with norm  
1/|| || ( | ( ) | d )

n

p p
p R

x xω ω= =∫  

 2 /2 1/( ( | ( ) | ) d ) .
n

p p
IR

I

x xω∑∫  

We denote the exterior derivative by  
1: ( , ) ( , ).n l n ld D R D R +′ ′∧ → ∧  

For 0,1,2, ,l n= ⋅⋅ ⋅  by the following conditions: 

(i) For 0l = , df  is the differential of f . (ii) 

For ( , )n lD Rα ′∈ ∧  and ( , )n kD Rβ ′∈ ∧ , we have 

d( ) d ( 1) d .lα β α β α β∧ = ∧ + − ∧  (iii) d(d ) 0α = .  

The elements of the kernel of : ( ,nd D R′  
1) ( , )l n lD R +′∧ → ∧  are called closed l-forms and 

those in the image of 1: ( , ) ( , )n l n ld D R D R−′ ′∧ → ∧  

are the exact l-forms.  

The formal adjoint operator (the Hodge co- 

differential) is the operator 1: ( , )n ld D R∗ +′ ∧ →  

( , )n lD R′ ∧ given by 1( 1) .nld d∗ += − ∗ ∗  

The forms in the image of : ( ,nd D R∗ ′  
1) ( , )l n lD R+ ′∧ → ∧  are called coexact l-forms.  

We make a brief list of spaces of differential 

forms: ( , )p n lL R ∧ -the space of differential forms 

with coefficients in ( )pL nR ; 1 ( , )p n lL R ∧ -the space 
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of differential forms ω  such that ω∇  is a regular 

distribution of class ( , )p n lL R ∧ ; 1, ( , )p n lW R ∧ -the 

Sobolev space of l-forms defined by ( , )p n lL R ∧ ∩  

1 ( , )p n lL R ∧ ; ( , )p n l
dW R ∧ -the space of l-forms ω  

such that 1d ( , )p n lL Rω +∈ ∧ ; ( , )p n l
d

W R∗ ∧ -the space 

of l -forms ω  such that 1( , )p n ld L Rω∗ −∈ ∧ . Of 

special importance is the following Hodge 

decomposition theorem, see [10].  

Theorem 2 (Hodge decomposition)  For each 

( , )r n lL Rω∈ ∧ , 1 r< < ∞ , there exist differential forms 

1ker ( , )r nd L Rα ∗∈ ∩ ∧ and 1ker ( , ),r nd L Rβ∈ ∩ ∧  

such that  

d dω α β∗= + .  (6) 

The forms dα  and d β∗  are unique and 

satisfy the uniform estimate  

1 1( ) ( )
|| || || || ( ) || || .r n r n r rL R L R

C nα β ω+ ≤  (7) 

For some constant ( )rC n  independent of ω .  

The following results about interpolation are 

coming from [3]. Given 1 jp< < ∞ , for 1 2j = , , we 

consider the function  
1

21 2
0 1,

( ) ( )
1.

p

p

s s
s s p p

s s
Φ Φ

⎧ ,
= ; , = ⎨

,⎩

≤ ≤
≥

 (8) 

if ( 1)j j jq p p= / −  is the Hölder conjugate 

exponent to jp , we set 1 2( )t q qΨ Φ= ; , . Then, for 

all 0s t, ≥ ,  

( ) ( ),st s tΦ Ψ+≤  (9) 
1 21 1( ) max{2 2 }( ( ) ( ))p ps t s tΦ Φ Φ− −+ , + .≤  (10) 

Due to the inequality (9), we say that Φ  and 

Ψ  are conjugate functions to each other.  

Now, let ( )X μ,  be a measure space and E  be 

a separable complex Hilbert space. The Hermitian 

product will be denote by ,  and the induced norm 

by | |⋅ . We shall consider μ -measurable functions 

from X  into E . To simplify notation, if Φ  is any 

function on [0 ],∞  and f E∈ , then we will write 

( )fΦ  instead of ( )fΦ | | . Also, we define the 

truncation  

1,
[ ]

1 | 1.
f f

f
f f

| |, | |⎧
= ⎨ / | |, | >⎩

≤
 

Let r rT L L: →  be a linear operator, bounded 

for 1 2 1 2[ ],1r r r r r∈ , < < < ∞ . In the paper [3], there 

are the following results.  

Lemma 1  There exists 
1 21 2( , ,|| || ,|| || )r rC C r r T T= > 

0, such that, for all 1 2 ,r rf L L∈ +   

( )d ( )d ,
X X

Tf C fΦ μ Φ μ∫ ∫≤  (11) 

where 1 2( ) ( ; , )s s p pΦ Φ=  is defined in (8), 1 2p p, ∈  

1 2[ ]r r, . 

Lemma 2  Suppose that 1 2/ (1 )r r rε+≤ ≤ , 

and [ ] ( )rf f L X Eε ∈ ,  verifies 0Tf = . Then, there 

exists 
1 21 2( , ,|| || ,|| || ) 0r rC C r r T T= >  such that  

1[ ] d [ ] dr r

X X
T f f f C f fε εμ ε μ−| || | | | .∫ ∫≤  (12) 

2 The Proof of the Theorem  

We shall prove Theorem 1 with r p ε= − , s =  

p ε+  for [0 1]ε ∈ ,  sufficiently small. We begin 

with an a priori estimate.  

Lemma 3  If u  is a solution of (1) and 

[d ] d pu uε | |  is integrable, then d ( , )su L∈ ∧n lR  and 

(5) holds.  

Proof  We first show that (5) holds for 2p > . 

Under the hypotheses of Lemma and the Lipschitz 

type condition, we know that ( d )A x g u, + ∈ 
/( 1) /( 1)s p r pL L− −+  and thus the test function of 

Definition 1 extends to ( 1) ( 1)d s s p r r pL Lφ / − + / − +∈ ∩ . 

Then in view of the Hodge decomposition (Theorem 

2), we decompose  

[d ] d du u Hε φ= + .  (13) 

Thus, φ  can be used as a test function. Using 

(2) and the Lipschitz type condition (ii), we obtain  

( ,d ),d ( ,d ),d
n nR R

A x u A x uφ φ= −∫ ∫   
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  ( , d ),d ( , d ),d
n nR R

A x g u A x g uφ φ+ + + =∫ ∫  

( ,d ),d ( , d ),d
n nR R

A x u A x g uφ φ− + +∫ ∫
 1,d ( d

nR
h C g g uφ | | | + | +∫ ∫ nR

≤  

2 2
2d ) d d ( dp pu h C g uφ φ− −+ | || | | || | +∫ ∫n nR R

≤  

1 ) dpg h φ−| | + | | | | .  (14) 

By the Hodge decomposition (13), we find that  

[ ]( ,d ),d ( ,d ), d d
n nR R

A x u A x u u u Hεφ = − =∫ ∫  

[ ]( ,d ), d d ( ,d ),
n nR R

A x u u u A x u Hε −∫ ∫ ≥  

 1[d ] d dp pu u H uε −| | − | || | .∫ ∫n nR R
 (15) 

Combing (15) and (14), we have  
1[d ] d | d |p pu u H uε −| | − | |∫ ∫n nR R
≤   

    2 1
2 ( d ) dp pC g u g h φ− −| || | + | | + | | | | .∫ nR

 (16) 

We apply Lemma 2 to the measure space 

( ),dnR x  and ( )l nE R= ∧ . The operator T  is then 

defined by T dω β∗=  and the operator G  is 

defined by dGω α= , where d dω α β∗= + (see the 

Hodge decomposition (6)). In view of (7), :T  

( , ) ( , )r n r nL R L R∧ → ∧ and : ( , ) ( , )r n r nG L R L R∧ → ∧  are 

bounded linear operators for all 1 r< < ∞ .  

It follows from the uniqueness of the Hodge 

decomposition that the kernel of T  consists of the 

exact forms from 1d ( , )r n l
dW R −∧ , while the range of 

T  consists of the coexact forms. In view of Lemma 

2, we have  
1

3d [d ] dp pH u C u uεε−| || | | | .∫ ∫n nR R
≤  (17) 

Therefore, we can estimate the left-hand side of 

(16) from below  
1[d ] d dp pu u H uε −| | − | || |∫ ∫n nR R
≥ 

3(1 ) [d ] d pC u uεε− | | .∫ nR
 (18) 

Now, we estimate each term in the right-hand 

side of (16). By Young’s inequality, we obtain  
2 1 1d dp p pg u u C gθθ− − −| || | | | + | | .≤  

Moreover, in view of (9), we have  
1 1d d ( d ) (d ).p pu uφ Φ Ψ φ− −| | | | | | +≤  

With ( ) ( ; ( 1), ( 1))t t s p r pΦ Φ= / − / − and ( )tΨ =  

( ; ( 1), ( 1))t s s p r r pΨ / − + / − + . Then 1( )ptΦ − = [ ] pt tε  

and ([ ] ) [ ] pt t t tε εΨ = . By the definition of the operator 

,G  the equality (13), and Lemma 1, we find that  
(d ) ( ([d ] d ))G u uεΨ φ Ψ=∫ ∫n nR R

≤  

4 4([d ] d ) [d ] d | .pC u u C u uε εΨ | | = |∫ ∫n nR R
 

2
4d d (1 ) [d ]pg u C u εφ θ−| || | | | + ⋅∫ ∫n nR R

≤  
1d dp pu C gθ φ−| | + | | | | .∫ nR

  (19) 

By Hölder inequality, and the uniform estimate 

(7) in the Hodge decomposition, and inequality 
( 1)([d ] d ) [d ] [d ]s s p pu u u uε ε/ − + ≤ , we find that  

1 1
/( 1)| | d | || || || d ||

n

p p
s s s pR

g gφ φ− −
− +∫ ≤ ≤ 

1
5 /( 1)|| || || [d ] d ||p

s s s pC g u uε−
− + ≤  

1 ( 1)
5 || || ( [d ] | d | ) ,

n

p p s p s
s R

C g u uε− − +∫  (20) 

/( 1) /( 1)| || d | || || || d ||
n s p s s pR

h hφ φ− − +∫ ≤ ≤ 

( 1)/
6 /( 1)|| || ( [d ] | d | ) .

n

p s p s
s p R

C h u uε − +
− ∫  (21) 

Combing (16) and (18)~(21), for ε  and θ  

small enough, we deduce  
1

7 /( 1)[d ] | d | (|| || || || )
n

p p
s s pR

u u C g hε −
−+ ⋅∫ ≤  

( 1)/( [d ] | d | ) .
n

p s p s

R
u uε − +∫  

which implies  
( 1)

8[d ] d ( )p s s pu u C g hε / −| | | | + | | .∫ ∫n nR R
≤  (22) 

On the other hand, in view of the homogeneity 

condition (iii), for 0δ > , (1) can be written as  
1( ( d ) / ) ( )pd A x g u d hδ δ∗ ∗ −, + = .  

Therefore, using the inequality (22), we have  
( 1)

9( [d ]) d ( )p s s pu u C g hεδ δ / −/ | | | | + | | .∫ ∫n nR R
≤  

Noticing that lim [d ] d ,u u a eδ δ δ→∞ / =| | . . by 

Fatou Lemma, we have proved that (5) is true.  

Now, we prove that (5) holds for 1 2.p< ≤  

According to the above argument, we know that 
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1
10[d ] d d | |p pu u H u gε −| | − | || | ⋅∫ ∫ ∫n n nR R R

≤C   
2( d d ) d d .pg u u hφ φ−| + | + + | || |∫ nR

  (23) 

In view of d dg g u u| | | + | + | |≤  and 2 0p − ≤ , 

we obtain  
2 2( d d ) .p pg u u g− −| + | + | | | |≤  (24) 

Substituting (24) into (23), we find that  
1[d ] d dp pu u H uε −| | − | || |∫ ∫n nR R
≤ 

 2
11 ( ) d ,pC g h φ−| | + | | | |∫ nR

 

and The following argument is similar. We have 

completed the proof of Lemma 3.   

Proof of Theorem 1   

Let us put 1 { 1}X x= ∈ :| |d ≤nR u  and 2X =  

{ 1},x∈ :| |d ≥nR u then, 1 2= ∪nR X X . By the hypo- 

these of Theorem 1, we know d ( , )
np lu L Rε−∈ ∧ , and  

1 2
[d ] d [d ] dp p

X X
u u u uε ε

∪
| | = | | =∫ ∫nR

 

1 2
d dp p

X X
u uε ε+ −| | + | |∫ ∫ ≤ 

1 2
d d dp p p

X X
u u uε ε ε− − −| | + | | = | | .∫ ∫ ∫ nR

 

Therefore, 1[d ] d pu u Lε | | ∈ . By the Lemma 3, 

we have d ( , )
ns lu L R∈ ∧  and (5) holds. This ends 

the proof of Theorem 1. 

References: 
[1] Stroffolini B. On weakly A-harmonic tensors[J]. Studia 

Mathematica, 1995, 114:289-301. 

[2] Iwaniec T, Sbordone C. Weak minima of variational 

integrals[J]. J Reine Angew Math, 1994, 454:143-161.  

[3] Stroffolini Capone C, Greco L, Iwaniec T. Higher 

integrability via Riesz transforms and interpolation[J]. 

Nonlinear Analysis, 2002, 49:513-523.  

[4] Lewis J. On very weak solutions of certain elliptic 

equations[J]. Comm Part Diff Equa, 1993, 18:1515-1537.  

[5] Hongya G. Regularity for very weak solutions of 

A-harmonic equation[J]. Acta Math Sin, 2001, 4(44): 

605-610.  

[6] Hongya G, Yinzhu C. Caccioppoli type inequality for 

weak solutions of A-harmonic equation and its appli- 

cations[J]. Kyungpook Math J, 2004, 44(3):363-368. 

[7] Hongya G, Yuquan Y, Suying X. Uniqueness for very 

weak solutions of A-harmonic equations with very weak 

boundary values[J]. Acta Math Sci, 2002, 22(1):41-46.  

[8] Hongya G, Min W, Hongliang Z. On very weak solutions 

for obstacle problems of A-harmonic equations[J]. J Math 

Res Exp, 2004, 24(1):159-167.  

[9] Iwaniec T, Lutoborski A. Integral estimates for null 

Lagrangians[J]. Arch Rational Mech Anal, 1993, 125:25-79.  

[10] Iwaniec T, Martin G. Quasiregular mappings in even 

dimensions[J]. Acta Math, 1993, 170:29-81.

弱 A-调和张量的高阶可积性 

李  娟 1, 高红亚 2 
（1.宁波大学 理学院, 浙江 宁波 315211; 2.河北大学 数学与计算机学院, 河北 保定 071002） 

摘要: 首先, 利用 Riesz 变换和内插理论的结果得到了非齐次 A-调和方程 ( d )d A x g u d h∗ ∗, + = 很弱解的一

个先验估计. 然后, 利用这个先验估计得到了该方程很弱解的高阶可积性.  
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