Higher－order Integrality for Weak A－harmonic Tensors

LI Juan ${ }^{1}$ ，GAO Hong－ya ${ }^{2}$
（ 1．Faculty of Science，Ningbo University，Ningbo 315211，China；
2．College of Mathematics and Computer Science，Hebei University，Baoding 071002，China ）

Abstract

The higher integrality for the very weak solutions of the non－homogeneous A－harmonic equation $d^{*} A(x, g+\mathrm{d} u)=d^{*} h$ is obtained using the result of Riesz transforms and interpolation．

Key words：interpolation；Hodge decomposition；weakA－harmonic tensor
CLC number：O174．2 Document code：A

Let $\wedge^{\prime}=\wedge^{\prime}\left(R^{n}\right)$ denote the linear space of $l-$ covectors in $\boldsymbol{R}^{n} \geqslant \mathrm{~d}, \quad l=1,2, \cdots, n$ ．For $l=0$ we put $\wedge^{0}\left(R^{n}\right)=R^{n}$ ．Also，$\wedge^{l}=\wedge^{l}\left(R^{n}\right)=0$ if $l<0$ or $l>n$ ．This is an inner product space of dimension C_{n}^{l} ．A differential form of degree l on $\boldsymbol{R}^{\boldsymbol{n}}$ is simply a function or Schwarz distribution on $\boldsymbol{R}^{\boldsymbol{n}}$ with values in \wedge^{\prime} ．We shall consider a nonlinear mapping $A: R^{n} \times \wedge^{\prime}\left(R^{n}\right) \rightarrow \wedge^{\prime}\left(R^{n}\right)$ ．

Which satisfies the usual measurability condi－ tions（Carathéodory conditions）and for some $1<$ $p<\infty$ ，the following conditions hold：
（i）the monotonicity inequality
$\langle A(x, \xi)-A(x, \zeta), \xi-\zeta\rangle \geqslant \alpha|\xi-\zeta|^{2}(|\xi+\zeta|)^{p-2}$.
（ii）the Lipschitz type condition

$$
|A(x, \xi)-A(x, \zeta)| \leqslant \beta|\xi-\zeta|(|\xi+\zeta|)^{p-2}
$$

（iii）the homogeneity condition

$$
A(x, \lambda \xi)=|\lambda|^{p-2} \lambda A(x, \xi) .
$$

For almost every $x \in \boldsymbol{R}^{n}, \lambda \in \boldsymbol{R}$ and all $\xi, \zeta \in$ $\wedge^{\prime}\left(R^{n}\right)$ ．The exponent $p>1$ will determine the
natural Sobolev class，denoted by $W_{d, l o c}^{p}\left(R^{n}, \wedge^{l-1}\right)$ ，in which to consider the nonhomogeneous A－harmonic equation

$$
\begin{equation*}
d^{*} A(x, g+\mathrm{d} u)=d^{*} h, \tag{1}
\end{equation*}
$$

（see［1］for the definition of $W_{d, l o c}^{p}\left(R^{n}, \wedge^{l-1}\right)$ and other Sobolev classes of differential forms）．

Definition 1 For $g \in L^{p}\left(R^{n}, \wedge^{l}\right)$ and $h \in$ $L^{q}\left(R^{n}, \wedge^{l}\right)$ with $1 / p+1 / q=1$ ，an A－harmonic tensor $u \in W_{d, l o c}^{p}\left(R^{n}, \wedge^{l-1}\right)$ is a weak solution of（1）defined as

$$
\begin{equation*}
\int_{R^{n}}\langle A(x, g+\mathrm{d} u), \mathrm{d} \phi\rangle=\int_{R^{n}}\langle h, \mathrm{~d} \phi\rangle, \tag{2}
\end{equation*}
$$

for all $\phi \in C_{0}^{\infty}\left(R^{n}, \wedge^{l-1}\right)$ ．
Definition 2 A differential form $u \in W_{d, l o c}^{r}\left(R^{n}\right.$ ， $\left.\wedge^{l-1}\right), \quad r \geqslant \max \{1, p-1\}$ ，is called a weak A－harmonic tensor if it satisfies equation（1）in the distributional sense for $g \in L^{r}\left(R^{n}, \wedge^{l}\right)$ and $h \in L^{r /(p-1)}\left(R^{n}, \wedge^{l}\right)$ ，that is，the integral identity（2）holds for all $\phi \in$ $L^{r /(r-p+1)}\left(R^{n}, \wedge^{l-1}\right)$ ．

Iwaniec T and Sbordone C showed in［2］the regularity result for the very weak solutions of the
equation

$$
\begin{equation*}
\operatorname{div} A(x, \nabla u(x))=0 \tag{3}
\end{equation*}
$$

They used the Hodge decomposition to build a test function, and obtained that there exist $r_{1}=$ $r_{1}(p, \Omega)$ and $r_{2}=r_{2}(p, \Omega)$ satisfying $1<r_{1}<p<$ $<r_{2}<\infty$, such that every very weak solution $u \in$ $W_{l o c}^{1, r_{1}}(\Omega)$ of equation (3) belongs to $u \in W_{l o c}^{1, r_{2}}(\Omega)$. Stroffolini B used the similar technique in [1] to obtain the regularity results for the very weak solutions of the homogeneous A-harmonic equation

$$
\begin{equation*}
d^{*} A(x, \mathrm{~d} u)=0 . \tag{4}
\end{equation*}
$$

In the paper [3], Stroffolini Capone C, et al proved the similar results via Riesz transforms and interpolation. For other results on very weak solution, see [4-8]. Now, inspired by the paper [3], we obtain the following regularity theorem.

Theorem 1 There exist exponent $\max \{1, p-$ $1\}<p_{1}=p_{1}(n, p)<p$ and $p_{2}=p_{2}(n, p)>p$, such that for $p_{1} \leqslant r \leqslant p \leqslant s \leqslant p_{2}, \quad g \in L^{s}\left(R^{n}, \wedge^{l}\right)$ and $\left.h \in L^{s /(p-1)} R^{n}, \wedge^{l}\right)$, we have if $u \in W_{d}^{r}\left(R^{n}, \wedge^{l-1}\right) \cap$ $L_{\text {loc }}^{1}\left(R^{n}, \wedge^{l-1}\right)$ is weak A-harmonic, then $u \in W_{d}^{s}\left(R^{n}\right.$, $\left.\wedge^{l-1}\right) \cap L_{l o c}^{1}\left(R^{n}, \wedge^{l-1}\right)$ as well and moreover

$$
\begin{equation*}
\int_{R^{n}}|\mathrm{~d} u|^{s} \leqslant C \int_{R^{n}}\left(|g|^{s}+|h|^{s /(p-1)}\right), \tag{5}
\end{equation*}
$$

Then, u is an A-harmonic tensor in the usual sense.

1 Notations and Preliminary Results

Throughout we use the notation of [9]. For the sake of completeness we list basic notions of exterior calculus. The direct sum $\wedge\left(R^{n}\right)=\oplus_{l=0}^{n} \wedge^{l}\left(R^{n}\right)$ is an exterior algebra with respect to the wedge product \wedge. We define the Hodge star operator $*: \wedge \rightarrow$ by the rule $* 1=e_{1} \wedge e_{2} \wedge \cdots \wedge e_{n}$, and $\alpha \wedge * \beta=\beta \wedge * \alpha=\langle\alpha, \beta\rangle(* 1)$.

For all $\alpha, \beta \in \wedge$. the norm of $\alpha \in \wedge$. is given by the formula $|a|^{2}=\langle\alpha, \alpha\rangle=*(\alpha \wedge * \alpha) \in \wedge^{0}=R$.

The Hodge star is an isometric isomorphism on
\wedge with $*: \wedge^{\prime} \rightarrow \wedge^{n-l}$ and $* *(-1)^{l(n-l)}: \wedge^{\prime} \rightarrow \wedge^{\prime} .$.
A differential l-form ω on $\boldsymbol{R}^{\boldsymbol{n}}$ is a locally integrable function or a Schwarz distribution on $\boldsymbol{R}^{\boldsymbol{n}}$ with values in $\wedge\left(R^{n}\right)$. We denote the space of differential l-form by $D^{\prime}\left(\boldsymbol{R}^{n}, \wedge^{l}\right)$. If $x_{1}, x_{2}, \cdots, x_{n}$ denote the coordinate functions in $\boldsymbol{R}^{\boldsymbol{n}}$, then the natural generators for the algebra of differential forms are the differentials $\mathrm{d} x_{1}, \mathrm{~d} x_{2}, \cdots, \mathrm{~d} x_{n}$. Thus each $\omega: R^{n} \rightarrow \wedge^{l}\left(R^{n}\right)$ can be written as

$$
\begin{aligned}
& \omega(x)=\sum_{I} \omega_{I}(x) \mathrm{d} x_{I}= \\
& \quad \sum \omega_{i_{i_{2}} \cdots i_{l}}(x) \mathrm{d} x_{i_{1}} \wedge \mathrm{~d} x_{i_{2}} \wedge \cdots \wedge \mathrm{~d} x_{i_{l}},
\end{aligned}
$$

where $\sum \omega_{i_{i} i_{2} \cdots i_{l}}(x)$ are either functions or distributions. We write $L^{p}\left(R^{n}, \wedge^{l}\right)$ for the l-forms $\omega(x)$ with $\omega_{I} \in L^{p}\left(\boldsymbol{R}^{n}, \boldsymbol{R}^{n}\right)$ for all ordered l tuples I. Thus $L^{p}\left(R^{n}, \wedge^{l}\right)$ is a Banach space with norm

$$
\begin{aligned}
& \|\omega\|_{p}=\left(\int_{R^{n}}|\omega(x)|^{p} \mathrm{~d} x\right)^{1 / p}= \\
& \quad\left(\int_{R^{n}}\left(\sum_{I}\left|\omega_{I}(x)\right|^{2}\right)^{p / 2} \mathrm{~d} x\right)^{1 / p} .
\end{aligned}
$$

We denote the exterior derivative by
$d: D^{\prime}\left(R^{n}, \wedge^{l}\right) \rightarrow D^{\prime}\left(R^{n}, \wedge^{l+1}\right)$.
For $l=0,1,2, \cdots, n$ by the following conditions:
(i) For $l=0$, $\mathrm{d} f$ is the differential of f. (ii) For $\alpha \in D^{\prime}\left(R^{n}, \wedge^{l}\right)$ and $\beta \in D^{\prime}\left(R^{n}, \wedge^{k}\right)$, we have $\mathrm{d}(\alpha \wedge \beta)=\mathrm{d} \alpha \wedge \beta+(-1)^{l} \alpha \wedge \mathrm{~d} \beta$. (iii) $\mathrm{d}(\mathrm{d} \alpha)=0$.

The elements of the kernel of $d: D^{\prime}\left(R^{n}\right.$, $\left.\wedge^{l}\right) \rightarrow D^{\prime}\left(R^{n}, \wedge^{l+1}\right)$ are called closed l-forms and those in the image of $d: D^{\prime}\left(R^{n}, \wedge^{l-1}\right) \rightarrow D^{\prime}\left(R^{n}, \wedge^{l}\right)$ are the exact l-forms.

The formal adjoint operator (the Hodge codifferential) is the operator $d^{*}: D^{\prime}\left(R^{n}, \wedge^{l+1}\right) \rightarrow$ $D^{\prime}\left(R^{n}, \wedge^{l}\right)$ given by $d^{*}=(-1)^{n l+1} * d *$.

The forms in the image of $d^{*}: D^{\prime}\left(R^{n}\right.$, $\left.\wedge^{l+1}\right) \rightarrow D^{\prime}\left(R^{n}, \wedge^{l}\right)$ are called coexact l-forms.

We make a brief list of spaces of differential forms: $L^{p}\left(R^{n}, \wedge^{l}\right)$-the space of differential forms with coefficients in $L^{p}\left(\boldsymbol{R}^{n}\right)$; $L_{1}^{p}\left(R^{n}, \wedge^{l}\right)$-the space
of differential forms ω such that $\nabla \omega$ is a regular distribution of class $L^{p}\left(R^{n}, \wedge^{l}\right)$ ；$W^{1, p}\left(R^{n}, \wedge^{l}\right)$－the Sobolev space of l－forms defined by $L^{p}\left(R^{n}, \wedge^{l}\right) \cap$ $L_{1}^{p}\left(R^{n}, \wedge^{l}\right) ; W_{d}^{p}\left(R^{n}, \wedge^{l}\right)$－the space of l－forms ω such that $\mathrm{d} \omega \in L^{p}\left(R^{n}, \wedge^{l+1}\right) ; W_{d^{*}}^{p}\left(R^{n}, \wedge^{l}\right)$－the space of l－forms ω such that $d^{*} \omega \in L^{p}\left(R^{n}, \wedge^{l-1}\right)$ ．Of special importance is the following Hodge decomposition theorem，see［10］．

Theorem 2 （Hodge decomposition）For each $\omega \in L^{r}\left(R^{n}, \wedge^{l}\right), 1<r<\infty$ ，there exist differential forms $\alpha \in \operatorname{ker} d^{*} \cap L_{1}^{r}\left(R^{n}, \wedge\right)$ and $\beta \in \operatorname{ker} d \cap L_{1}^{r}\left(R^{n}, \wedge\right)$ ， such that

$$
\begin{equation*}
\omega=\mathrm{d} \alpha+d^{*} \beta \tag{6}
\end{equation*}
$$

The forms $\mathrm{d} \alpha$ and $d^{*} \beta$ are unique and satisfy the uniform estimate

$$
\begin{equation*}
\|\alpha\|_{L_{1}^{\prime}\left(R^{n}\right)}+\|\beta\|_{L_{1}^{\prime}\left(R^{n}\right)} \leqslant C_{r}(n)\|\omega\|_{r} . \tag{7}
\end{equation*}
$$

For some constant $C_{r}(n)$ independent of ω ．
The following results about interpolation are coming from［3］．Given $1<p_{j}<\infty$ ，for $j=1,2$ ，we consider the function

$$
\Phi(s)=\Phi\left(s ; p_{1}, p_{2}\right)=\left\{\begin{array}{l}
s^{p_{1}}, 0 \leqslant s \leqslant 1 \tag{8}\\
s^{p_{2}}, s \geqslant 1
\end{array}\right.
$$

if $q_{j}=p_{j} /\left(p_{j}-1\right)$ is the Hölder conjugate exponent to p_{j} ，we set $\Psi=\Phi\left(t ; q_{1}, q_{2}\right)$ ．Then，for all $s, t \geqslant 0$ ，

$$
\begin{align*}
& s t \leqslant \Phi(s)+\Psi(t) \tag{9}\\
& \Phi(s+t) \leqslant \max \left\{2^{p_{1}-1}, 2^{p_{2}-1}\right\}(\Phi(s)+\Phi(t)) \tag{10}
\end{align*}
$$

Due to the inequality（9），we say that Φ and Ψ are conjugate functions to each other．

Now，let (X, μ) be a measure space and E be a separable complex Hilbert space．The Hermitian product will be denote by \langle,$\rangle and the induced norm$ by $|\cdot|$ ．We shall consider μ－measurable functions from X into E ．To simplify notation，if Φ is any function on $[0, \infty]$ and $f \in E$ ，then we will write $\Phi(f)$ instead of $\Phi(|f|)$ ．Also，we define the
truncation

$$
[f]=\left\{\begin{array}{l}
|f|,|f| \leqslant 1, \\
1 /|f|,|f|>1 .
\end{array}\right.
$$

Let $T: L^{r} \rightarrow L^{r}$ be a linear operator，bounded for $r \in\left[r_{1}, r_{2}\right], 1<r_{1}<r_{2}<\infty$ ．In the paper［3］，there are the following results．

Lemma 1 There exists $C=C\left(r_{1}, r_{2},\|T\|_{r_{1}},\|T\|_{r_{2}}\right)>$ 0 ，such that，for all $f \in L^{r_{1}}+L^{r_{2}}$ ，

$$
\begin{equation*}
\int_{X} \Phi(T f) \mathrm{d} \mu \leqslant C \int_{X} \Phi(f) \mathrm{d} \mu, \tag{11}
\end{equation*}
$$

where $\Phi(s)=\Phi\left(s ; p_{1}, p_{2}\right)$ is defined in（8），$p_{1}, p_{2} \in$ $\left[r_{1}, r_{2}\right]$ ．

Lemma 2 Suppose that $r_{1} \leqslant r /(1+\varepsilon) \leqslant r_{2}$ ， and $[f]^{\varepsilon} f \in L^{r}(X, E)$ verifies $T f=0$ ．Then，there exists $C=C\left(r_{1}, r_{2},\|T\|_{r_{1}},\|T\|_{r_{2}}\right)>0$ such that

$$
\begin{equation*}
\int_{X}\left|T[f]^{\varepsilon} f \| f\right|^{r-1} \mathrm{~d} \mu \leqslant C \varepsilon \int_{X}[f]^{\varepsilon}|f|^{r} \mathrm{~d} \mu . \tag{12}
\end{equation*}
$$

2 The Proof of the Theorem

We shall prove Theorem 1 with $r=p-\varepsilon, s=$ $p+\varepsilon$ for $\varepsilon \in[0,1]$ sufficiently small．We begin with an a priori estimate．

Lemma 3 If u is a solution of（1）and $[\mathrm{d} u]^{\varepsilon}|\mathrm{d} u|^{p}$ is integrable，then $\mathrm{d} u \in L^{s}\left(\boldsymbol{R}^{n}, \wedge^{l}\right)$ and （5）holds．

Proof We first show that（5）holds for $p>2$ ． Under the hypotheses of Lemma and the Lipschitz type condition，we know that $A(x, g+\mathrm{d} u) \in$ $L^{s /(p-1)}+L^{r /(p-1)}$ and thus the test function of Definition 1 extends to $\mathrm{d} \phi \in L^{s /(s-p+1)} \cap L^{r /(r-p+1)}$ ． Then in view of the Hodge decomposition（Theorem 2），we decompose

$$
\begin{equation*}
[\mathrm{d} u]^{\varepsilon} \mathrm{d} u=\mathrm{d} \phi+H . \tag{13}
\end{equation*}
$$

Thus，ϕ can be used as a test function．Using （2）and the Lipschitz type condition（ii），we obtain

$$
\int_{R^{n}}\langle A(x, \mathrm{~d} u), \mathrm{d} \phi\rangle=\int_{R^{n}}\langle A(x, \mathrm{~d} u), \mathrm{d} \phi\rangle-
$$

$$
\begin{align*}
& \int_{R^{n}}\langle A(x, g+\mathrm{d} u), \mathrm{d} \phi\rangle+\int_{R^{n}}\langle A(x, g+\mathrm{d} u), \mathrm{d} \phi\rangle= \\
& \int_{R^{n}}\langle A(x, \mathrm{~d} u), \mathrm{d} \phi\rangle-\int_{R^{n}}\langle A(x, g+\mathrm{d} u), \mathrm{d} \phi\rangle+ \\
& \int_{R^{n}}\langle h, \mathrm{~d} \phi\rangle \leqslant C_{1} \int_{R^{n}}|g|(|g+\mathrm{d} u|+ \\
& \mathrm{d} u)^{p-2} \mathrm{~d} \phi+\int_{R^{n}}|h \| \mathrm{d} \phi| \leqslant C_{2} \int_{R^{n}}\left(|g \| \mathrm{d} u|^{p-2}+\right. \\
& \left.|g|^{p-1}+|h|\right)|\mathrm{d} \phi| . \tag{14}
\end{align*}
$$

By the Hodge decomposition (13), we find that

$$
\begin{gather*}
\int_{R^{n}}\langle A(x, \mathrm{~d} u), \mathrm{d} \phi\rangle=\int_{R^{n}}\left\langle A(x, \mathrm{~d} u),[\mathrm{d} u]^{\varepsilon} \mathrm{d} u-H\right\rangle= \\
\int_{R^{n}}\left\langle A(x, \mathrm{~d} u),[\mathrm{d} u]^{\varepsilon} \mathrm{d} u\right\rangle-\int_{R^{n}}\langle A(x, \mathrm{~d} u), H\rangle \geqslant \\
\int_{R^{n}}[\mathrm{~d} u]^{\varepsilon}|\mathrm{d} u|^{p}-\int_{R^{n}}|H \| \mathrm{d} u|^{p-1} . \tag{15}
\end{gather*}
$$

Combing (15) and (14), we have

$$
\begin{align*}
& \int_{R^{n}}[\mathrm{~d} u]^{\varepsilon}|\mathrm{d} u|^{p}-\int_{R^{n}}|H \| \mathrm{d} u|^{p-1} \leqslant \\
& \quad C_{2} \int_{R^{n}}\left(|g \| \mathrm{d} u|^{p-2}+|g|^{p-1}+|h|\right)|\mathrm{d} \phi| . \tag{16}
\end{align*}
$$

We apply Lemma 2 to the measure space ($\boldsymbol{R}^{n}, \mathbf{d} \boldsymbol{x}$) and $E=\wedge^{l}\left(R^{n}\right)$. The operator T is then defined by $T \omega=d^{*} \beta$ and the operator G is defined by $G \omega=\mathrm{d} \alpha$, where $\omega=\mathrm{d} \alpha+d^{*} \beta$ (see the Hodge decomposition (6)). In view of (7), T : $L^{r}\left(R^{n}, \wedge\right) \rightarrow L^{r}\left(R^{n}, \wedge\right)$ and $G: L^{r}\left(R^{n}, \wedge\right) \rightarrow L^{r}\left(R^{n}, \wedge\right)$ are bounded linear operators for all $1<r<\infty$.

It follows from the uniqueness of the Hodge decomposition that the kernel of T consists of the exact forms from $\mathrm{d} W_{d}^{r}\left(R^{n}, \wedge^{l-1}\right)$, while the range of T consists of the coexact forms. In view of Lemma 2, we have

$$
\begin{equation*}
\int_{R^{n}}|H \| \mathrm{d} u|^{p-1} \leqslant C_{3} \varepsilon \int_{R^{n}}[\mathrm{~d} u]^{\varepsilon}|\mathrm{d} u|^{p} \tag{17}
\end{equation*}
$$

Therefore, we can estimate the left-hand side of (16) from below

$$
\begin{gather*}
\int_{R^{n}}[\mathrm{~d} u]^{\varepsilon}|\mathrm{d} u|^{p}-\int_{R^{n}}|H \| \mathrm{d} u|^{p-1} \geqslant \\
\left(1-C_{3} \varepsilon\right) \int_{R^{n}}[\mathrm{~d} u]^{\varepsilon}|\mathrm{d} u|^{p} . \tag{18}
\end{gather*}
$$

Now, we estimate each term in the right-hand side of (16). By Young's inequality, we obtain

$$
|g \| \mathrm{d} u|^{p-2} \leqslant \theta|\mathrm{~d} u|^{p-1}+C_{\theta}|g|^{p-1} .
$$

Moreover, in view of (9), we have
$|\mathrm{d} u|^{p-1}|\mathrm{~d} \phi| \leqslant \Phi\left(|\mathrm{d} u|^{p-1}\right)+\Psi(\mathrm{d} \phi)$.
With $\Phi(t)=\Phi(t ; s /(p-1), r /(p-1))$ and $\Psi(t)=$ $\Psi(t ; s /(s-p+1), r /(r-p+1))$. Then $\Phi\left(t^{p-1}\right)=[t]^{\varepsilon} t^{p}$ and $\Psi\left([t]^{\varepsilon} t\right)=[t]^{\varepsilon} t^{p}$. By the definition of the operator G, the equality (13), and Lemma 1 , we find that

$$
\begin{align*}
& \int_{R^{n}} \Psi(\mathrm{~d} \phi)=\int_{R^{n}} \Psi\left(G\left([\mathrm{~d} u]^{\varepsilon} \mathrm{d} u\right)\right) \leqslant \\
& \quad C_{4} \int_{R^{n}} \Psi\left([\mathrm{~d} u]^{\varepsilon}|\mathrm{d} u|\right)=C_{4} \int_{R^{n}}[\mathrm{~d} u]^{\varepsilon}|\mathrm{d} u|^{p} . \\
& \int_{R^{n}}|g \| \mathrm{d} u|^{p-2}|\mathrm{~d} \phi| \leqslant\left(1+C_{4}\right) \theta \int_{R^{n}}[\mathrm{~d} u]^{\varepsilon} . \\
& \quad|\mathrm{d} u|^{p}+C_{\theta} \int_{R^{n}}|g|^{p-1}|\mathrm{~d} \phi| . \tag{19}
\end{align*}
$$

By Hölder inequality, and the uniform estimate (7) in the Hodge decomposition, and inequality $\left([\mathrm{d} u]^{\varepsilon} \mathrm{d} u\right)^{s /(s-p+1)} \leqslant[\mathrm{d} u]^{\varepsilon}[\mathrm{d} u]^{p}$, we find that

$$
\begin{gather*}
\int_{R^{n}}|g|^{p-1} \mathrm{~d} \phi \mid \leqslant\|g\|_{s}^{p-1}\|\mathrm{~d} \phi\|_{s /(s-p+1)} \leqslant \\
C_{5}\|g\|_{s}^{p-1}\left\|[\mathrm{~d} u]^{\varepsilon} \mathrm{d} u\right\|_{s /(s-p+1)} \leqslant \\
C_{5}\|g\|_{s}^{p-1}\left(\int_{R^{n}}[\mathrm{~d} u]^{\varepsilon}|\mathrm{d} u|^{p}\right)^{(s-p+1) / s} \tag{20}\\
\int_{R^{n}}\left|h\|\mathrm{~d} \phi \mid \leqslant\| h\left\|_{s /(p-1)}\right\| \mathrm{d} \phi \|_{s /(s-p+1)} \leqslant\right. \\
C_{6}\|h\|_{s /(p-1)}\left(\int_{R^{n}}[\mathrm{~d} u]^{\varepsilon}|\mathrm{d} u|^{p}\right)^{(s-p+1) / s} \tag{21}
\end{gather*}
$$

Combing (16) and (18)~(21), for ε and θ small enough, we deduce

$$
\begin{aligned}
& \int_{R^{n}}[\mathrm{~d} u]^{\varepsilon}|\mathrm{d} u|^{p} \leqslant C_{7}\left(\|g\|_{s}^{p-1}+\|h\|_{s /(p-1)}\right) . \\
& \left(\int_{R^{n}}[\mathrm{~d} u]^{\varepsilon}|\mathrm{d} u|^{p}\right)^{(s-p+1) / s} .
\end{aligned}
$$

which implies

$$
\begin{equation*}
\int_{R^{n}}[\mathrm{~d} u]^{\varepsilon}|\mathrm{d} u|^{p} \leqslant C_{8} \int_{R^{n}}\left(|g|^{s}+|h|^{5 /(p-1)}\right) \tag{22}
\end{equation*}
$$

On the other hand, in view of the homogeneity condition (iii), for $\delta>0$, (1) can be written as

$$
d^{*} A(x,(g+\mathrm{d} u) / \delta)=d^{*}\left(\delta^{1-p} h\right)
$$

Therefore, using the inequality (22), we have
$\int_{R^{n}}(\delta[\mathrm{~d} u / \delta])^{\varepsilon}|\mathrm{d} u|^{p} \leqslant C_{9} \int_{R^{n}}\left(|g|^{s}+|h|^{s /(p-1)}\right)$.
Noticing that $\lim _{\delta \rightarrow \infty} \delta[\mathrm{d} u / \delta]=|\mathrm{d} u|$ a.e., by Fatou Lemma, we have proved that (5) is true.

Now, we prove that (5) holds for $1<p \leqslant 2$. According to the above argument, we know that

$$
\begin{gather*}
\int_{R^{n}}[\mathrm{~d} u]^{\varepsilon}|\mathrm{d} u|^{p}-\int_{R^{n}}|H \| \mathrm{d} u|^{p-1} \leqslant \mathrm{C}_{10} \int_{R^{n}}|g| \cdot \\
(|g+\mathrm{d} u|+\mathrm{d} u)^{p-2} \mathrm{~d} \phi+\int_{R^{n}}|h \| \mathrm{d} \phi| . \tag{23}
\end{gather*}
$$

In view of $|g| \leqslant|g+\mathrm{d} u|+|\mathrm{d} u|$ and $p-2 \leqslant 0$ ， we obtain

$$
\begin{equation*}
(|g+\mathrm{d} u|+|\mathrm{d} u|)^{p-2} \leqslant|g|^{p-2} \tag{24}
\end{equation*}
$$

Substituting（24）into（23），we find that

$$
\begin{gathered}
\int_{R^{n}}[\mathrm{~d} u]^{\varepsilon}|\mathrm{d} u|^{p}-\int_{R^{n}}|H \| \mathrm{d} u|^{p-1} \leqslant \\
C_{11} \int_{R^{n}}\left(|g|^{p-2}+|h|\right)|\mathrm{d} \phi|,
\end{gathered}
$$

and The following argument is similar．We have completed the proof of Lemma 3.

Proof of Theorem 1

Let us put $X_{1}=\left\{x \in \boldsymbol{R}^{\boldsymbol{n}}:|\mathbf{d} \boldsymbol{u}| \leqslant 1\right\}$ and $X_{2}=$ $\left\{x \in \boldsymbol{R}^{n}:|\mathbf{d} \boldsymbol{u}| \geqslant 1\right\}$ ，then， $\boldsymbol{R}^{n}=\boldsymbol{X}_{1} \cup \boldsymbol{X}_{2}$ ．By the hypo－ these of Theorem 1，we know $\mathrm{d} u \in L^{p-\varepsilon}\left(R^{n}, \wedge^{l}\right)$ ，and

$$
\begin{aligned}
& \int_{R^{n}}[\mathrm{~d} u]^{\varepsilon}|\mathrm{d} u|^{p}=\int_{X_{1} \cup X_{2}}[\mathrm{~d} u]^{\varepsilon}|\mathrm{d} u|^{p}= \\
& \quad \int_{X_{1}}|\mathrm{~d} u|^{p+\varepsilon}+\int_{X_{2}}|\mathrm{~d} u|^{p-\varepsilon} \leqslant \\
& \quad \int_{X_{1}}|\mathrm{~d} u|^{p-\varepsilon}+\int_{X_{2}}|\mathrm{~d} u|^{p-\varepsilon}=\int_{R^{n}}|\mathrm{~d} u|^{p-\varepsilon} .
\end{aligned}
$$

Therefore，$[\mathrm{d} u]^{\varepsilon}|\mathrm{d} u|^{p} \in L^{1}$ ．By the Lemma 3， we have $\mathrm{d} u \in L^{s}\left(R^{n}, \wedge^{l}\right)$ and（5）holds．This ends the proof of Theorem 1.

References：

［1］Stroffolini B．On weakly A－harmonic tensors［J］．Studia Mathematica，1995，114：289－301．
［2］Iwaniec T，Sbordone C．Weak minima of variational integrals［J］．J Reine Angew Math，1994，454：143－161．
［3］Stroffolini Capone C，Greco L，Iwaniec T．Higher integrability via Riesz transforms and interpolation［J］． Nonlinear Analysis，2002，49：513－523．
［4］Lewis J．On very weak solutions of certain elliptic equations［J］．Comm Part Diff Equa，1993，18：1515－1537．
［5］Hongya G．Regularity for very weak solutions of A－harmonic equation［J］．Acta Math Sin，2001，4（44）： 605－610．
［6］Hongya G，Yinzhu C．Caccioppoli type inequality for weak solutions of A－harmonic equation and its appli－ cations［J］．Kyungpook Math J，2004，44（3）：363－368．
［7］Hongya G，Yuquan Y，Suying X．Uniqueness for very weak solutions of A－harmonic equations with very weak boundary values［J］．Acta Math Sci，2002，22（1）：41－46．
［8］Hongya G，Min W，Hongliang Z．On very weak solutions for obstacle problems of A－harmonic equations［J］．J Math Res Exp，2004，24（1）：159－167．
［9］Iwaniec T，Lutoborski A．Integral estimates for null Lagrangians［J］．Arch Rational Mech Anal，1993，125：25－79．
［10］Iwaniec T，Martin G．Quasiregular mappings in even dimensions［J］．Acta Math，1993，170：29－81．

弱 A－调和张量的高阶可积性

李 姢 ${ }^{1}$ ，高亚 ${ }^{2}$

（1．宁波大学 理学院，浙江 宁波 315211；2．河北大学 数学与计算机学院，河北 保定 071002）
摘要：首先，利用 Riesz 变换和内插理论的结果得到了非齐次 A－调和方程 $d^{*} A(x, g+\mathrm{d} u)=d^{*} h$ 很弱解的一个先验估计．然后，利用这个先验估计得到了该方程很弱解的高阶可积性。
关键词：内插；Hodge 分解；弱 A－调和张量
中图分类号：O174．2
文献标识码：A

