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Higher-order Integrality for Weak A-harmonic Tensors
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Abstract: The higher integrality for the very weak solutions of the non-homogeneous A-harmonic

equation d"A(x,g+du)=d"h is obtained using the result of Riesz transforms and interpolation.
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Let A'=A'(R") denote the linear space of |-
covectors in R">d, 1=12,---n. For 1=0 we
put A°(RM)=R". Also, A'=A'(R")=0 if 1<0 or
I >n. This is an inner product space of dimension
C!. A differential form of degree 1 on R" is
simply a function or Schwarz distribution on R"
with values in A'. We shall consider a nonlinear
mapping A:R"xA'(R") — A'(R").

Which satisfies the usual measurability condi-
tions (Carathéodory conditions) and for some 1<
p <, the following conditions hold:

(i) the monotonicity inequality

(AE-AXE)LE-C)Zale =T (164"

(ii) the Lipschitz type condition

|A(E) ~ A€ BIE-CIIE+E)™

(iii) the homogeneity condition

A(X,AE) =| 1|7 AA(X,E).

For almost every xeR",1eR and all &,{e

A'(R"). The exponent p>1 will determine the
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natural Sobolev class, denoted by W, (R",A'™), in
which to consider the nonhomogeneous A-harmonic
equation

d*A(x,g +du)=d"h, (@))
(see [1] for the definition of W/ (R",A'™") and
other Sobolev classes of differential forms).

Definition 1  For gel’(R"A') and he
LY(R", A" with 1/ p+1/q=1, an A-harmonic tensor

uewp

d,loc

[ (A g+du),dg)=] (hdg) @
forall geC7(R",A'™).

Definition 2 A differential form ueW;, . (R",

A, r=max{l, p-1}, is called a weak A-harmonic

(R",A'"™) is aweak solution of (1) defined as

tensor if it satisfies equation (1) in the distributional
sense for geL"(R",A') and heL"®?(R",A"), that
is, the integral identity (2) holds for all ¢e
LR AT

Iwaniec T and Sbordone C showed in [2] the
regularity result for the very weak solutions of the
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equation
divA(x,Vu(x))=0. 3)
They used the Hodge decomposition to build a
test function, and obtained that there exist r, =
n(p,2) and r,=r,(p,Q)
<r,<o, such that every very weak solution ue
Wi () of equation (3) belongs to ueW::(£2).

loc loc

satisfying l<r<p<

Stroffolini B used the similar technique in [1] to
obtain the regularity results for the very weak
solutions of the homogeneous A-harmonic equation

d*A(x,du) =0. 4)

In the paper [3], Stroffolini Capone C, et al
proved the similar results via Riesz transforms and
interpolation. For other results on very weak solution,
see [4-8]. Now, inspired by the paper [3], we obtain
the following regularity theorem.

Theorem 1 There exist exponent max{l p—
B<p=p(np)<p and p,=p,(n,p)>p , such
that for p,<r<p<s<p,, gel’(R"A") and
he LY®PR" A"), we have if uerr(R”,/\H)m
L. (R",A"™) is weak A-harmonic, then ueW;(R",

A AL (R",A'™) as well and moreover

loc
[ ldup<cC[ (g +hFe?), (5)

Then, u isan A-harmonic tensor in the usual sense.
1 Notations and Preliminary Results
Throughout we use the notation of [9]. For the

sake of completeness we list basic notions of exterior

calculus. The direct sum A(R") =@, A' (R") is an

exterior algebra with respect to the wedge product A.

We define the Hodge star operator *: A — by the rule
*1=e A e,A- NG, aNd an*f=F A*a =(a,B)(*]).

For all a,fenA. the norm of aeA. is given
by the formula |af’=(a,a)=*(ar*a)e A’ =R.

The Hodge star is an isometric isomorphism on

“oand xx (=1 A S AL

A With = A 5> A"

A differential I-form @ on R" is a locally
integrable function or a Schwarz distribution on R"
with values in A(R"). We denote the space of
differential I-form by D'(R",A') . If X,X,,---X,
denote the coordinate functions in R", then the
natural generators for the algebra of differential forms

are the differentials dx;,dx,,---dx, . Thus each

n -

@:R"— A'(R") can be written as

o(X) =Y o (X)dx, =
Do

o (00X AdX A AdX

where Za)ilizwil(x) are either functions or dis-
tributions. We write L°(R",A') for the I-forms (x)
with o, e L°(R",R") for all ordered | tuples 1.

Thus L°(R",A") is a Banach space with norm
loll,= (]| ()] )" =
(jRn<IZ|w. () )" dx)"*.

We denote the exterior derivative by

d:D'(R",A") > D'(R",A"™).

For 1=0,1,2,---,n by the following conditions:

(i) For 1=0, df is the differential of f . (ii)
For «eD'(R",A') and BeD'(R",A*), we have
d@ap)=da f+(D)'ardp. (iii) dda)=0.

The elements of the kernel of d:D'(R",
A= D'(R",A") are called closed I-forms and
those in the image of d:D'(R",A"™")— D'(R",A")
are the exact I-forms.

The formal adjoint operator (the Hodge co-
differential) is d*:D'(R", A" >
D'(R", A")given by d* =(=1)""xd *.

The forms in the

the operator
image of d*:D'(R",
A"™) = D'(R",A") are called coexact I-forms.

We make a brief list of spaces of differential
forms: L°(R",A') -the space of differential forms
with coefficients in L"(R"); L’(R",A')-the space
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of differential forms @ such that Ve is a regular
distribution of class L°(R",A'); W*"(R",A") -the
Sobolev space of I-forms defined by L°(R",A")
L’(R",A") ; WS(R",A') -the space of I-forms w
such that dweL?(R",A"™); WP(R",A") -the space
of | -forms ® such that d*wel’(R",A"™") . Of
special importance is the following Hodge
decomposition theorem, see [10].

Theorem 2 (Hodge decomposition) For each
wel"(R",A"), I<r<oo, there exist differential forms

aekerd’'nj(R",A)and pekerd nL(R",A),
such that

wo=da+d"B. (6)

The forms da and d*p are unique and
satisfy the uniform estimate

6t ly oy +11 Bl oy < Ce M 0], )

For some constant C,(n) independent of w.

The following results about interpolation are
coming from [3]. Given 1< p,; <o, for j=12, we
consider the function
sh,0<s<],

s, s=1.

D(s)=D(s; o> pz) :{ (8)

if g,=p,;/(p;-1) is the Holder conjugate
exponent to p;, we set ¥ =a(t;q,,q,) . Then, for
all s,;t=0,

st<@(s) + (1), 9)

D(s+t) <max{2” 2" HD(s) + D(t)). (10)

Due to the inequality (9), we say that @ and
¥ are conjugate functions to each other.

Now, let (X,u) beameasure space and E be
a separable complex Hilbert space. The Hermitian
product will be denote by (,) and the induced norm
by |-]. We shall consider g -measurable functions
from X into E. To simplify notation, if @ isany
function on [0,0] and f e E, then we will write
@ (f) instead of @( f|). Also, we define the

truncation
fl,|fI<i

[f]:{|1/||}||, ||f 1.

Let T:L' > L be a linear operator, bounded
for relr,r,],1<r <r,<w. In the paper [3], there
are the following results.

Lemma 1 There exists C=C(r,n,[TI.ITl,)>
0, such that, forall f eL® +L?,

[, @t)du<c| @(f)dy, (11)
where @(s)=®(s; p,, p,) isdefinedin (8), p,p,e
[n.r].

Lemma 2 Suppose that r<r/(l+&)<r,,

and [f]°f el (X,E) verifies Tf =0. Then, there
exists C=C(r,r,,[[T].[ITI,)>0 such that

[TOEF I du<Cef [F1°]fdu (12)
2 The Proof of the Theorem

We shall prove Theorem 1 with r=p—-¢, s=
p+e for &€[0,1] sufficiently small. We begin
with an a priori estimate.

Lemma 3 If u
[du]® |du|® is integrable, then dueL*(R",A') and
(5) holds.

Proof We first show that (5) holds for p>2.
Under the hypotheses of Lemma and the Lipschitz

is a solution of (1) and

type condition, we know that
LD 4 LY and
Definition 1 extends to dge LY A 7P

Then in view of the Hodge decomposition (Theorem

A(X,g+du) e
thus the test function of

2), we decompose
[dulfdu=dg+H. (13)
Thus, ¢ can be used as a test function. Using

(2) and the Lipschitz type condition (ii), we obtain
jRn<A(x,du),d¢>=jRn<A(x,du),d¢>—
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jRn<A(x,g+du),d¢>+jRn<A(x,g+du),d¢>=
[ .(A(x,du),dg)~ [ (A(x,g+du),dg)+
[o(hdg)<cC[ lgl(g+dul+
du)"?dg+ [ [hlldg<C,[  (gliduf>?+

[gI""+[h][dg]|. (14)
By the Hodge decomposition (13), we find that

jRn<A(x,du),d¢)=jRn<A(x,du),[du]fdu - H>:
jRn<A(x,du),[du]g du>—fRn<A(x,du), H)>
[ [duT [du P [ |H |[du]**. (15)

Combing (15) and (14), we have
& -1
[ Tdul [dul =[ [H [ duf*<

C,[, (glidulP? +[g "+ h)[dg|. (16)

We apply Lemma 2 to the measure space
(R",dx) and E=A'(R"). The operator T is then
defined by Tw=d*f# and the operator G is
defined by Gw=da, where w=da+d" (see the
Hodge decomposition (6)). In view of (7), T:
L'(R",A)—>L(R",A) and G:.L'(R",A)>L (R",A) are
bounded linear operators forall 1<r<o.

It follows from the uniqueness of the Hodge
decomposition that the kernel of T consists of the
exact forms from dw, (R",A'™"), while the range of
T consists of the coexact forms. In view of Lemma
2, we have

[ IHdu[<Cy[ [dul |dul” . (17)

Therefore, we can estimate the left-hand side of
(16) from below

[ Tdul [dul? =] 1H [[du[>
(L-Cs&)[ , [du] [du . (18)

Now, we estimate each term in the right-hand
side of (16). By Young’s inequality, we obtain
lglldulP?<@|du"*+C,|g["".

Moreover, in view of (9), we have

[dul™|dg < @(du[*™) + ¥ (dg).

With @(t)=@(t;s/(p-1),r/(p-1) and ¥ (t)=
P(t;s/(s—p+1), r/(r—p+1). Then@(t*™) = [t]°t°
and % ([t]°t) =[t]°t". By the definition of the operator
G, the equality (13), and Lemma 1, we find that

[ ¥(dg)=]  #(G(du] du)) <

C. [, #([du) |du) =C, [ [du]" [du[".

[.lglldupP?dgl<@+C,)of  [du]-

[dulP+C, [ 19" dg]. (19)

By Holder inequality, and the uniform estimate
(7) in the Hodge decomposition, and inequality
([du]? du)*C"* < [du]°[du]”, we find that

[ g P dg < g1 Al pury<

Cs Il g 117 ITdu]” du [l .y <
Collg 12 ([ [dul [du )P0, (20)
IRnl hildg|<lIhllep-ll AP llgis-peny<

Co 11 gy pay (fRn[dU]f [du[P)EP= (21)
Combing (16) and (18)~(21), for ¢ and &

small enough, we deduce
IRn[dU]‘g [dulP<C (I g I+ llyp)-
(][] [duPyePers,
which implies
[ Idul jduP<Cy[ (gF+hFeY).  (22)

On the other hand, in view of the homogeneity
condition (iii), for 6 >0, (1) can be written as

d*A(x,(g +du)/5)=d* (5" Ph).

Therefore, using the inequality (22), we have

[ (6Tdu/8)° |duP<C, [ (g f +[h[).

Noticing that lim, _&[du/d]=/du|ae., by

Fatou Lemma, we have proved that (5) is true.

>0

Now, we prove that (5) holds for 1< p<2.

According to the above argument, we know that
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[ [du][dulP =] [H du[?<Cy  lg]-
(| g+dul+du)**dg+ [ [hl|dg|.  (23)
In view of |g|<|g+du|+|du| and p-2<0,
we obtain
(g+dul+[duf)™*<g|"*. (24)
Substituting (24) into (23), we find that
& p p-1
[ TauT [dul —[ |H [[du|”<
p-2
Cul,, (9P +Ih)|dg],
and The following argument is similar. We have
completed the proof of Lemma 3.
Proof of Theorem 1
Let us put X,={xeR":|du|<1} and X, =
{xe R":|du|>1},then, R" =X, U X, . By the hypo-
these of Theorem 1, we know du e L‘”‘(Rn ,A'), and
& p_ & p_
[ [du] |du] _jwz [du]* |du|’=
p+e p-¢
_[X1|du| +sz|du| <

J.X1|du P +sz|du |p’€=IRn|du P

Therefore, [du]’ |du|’eLl". By the Lemma 3,
we have duel*(R",A") and (5) holds. This ends

the proof of Theorem 1.

315211; 2.

, Riesz

; Hodge : A-
:0174.2
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