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Abstract: Let €2 be a bounded Lipschitz domain in R",n=3. Let ®,(Q)=/Q-Q,|*, where Q, is
a fixed point on 0€2. For Schrodinger equation —Au+Vu=0 in (2, with singular non-negative

potentials V belonging to the reverse Holder class B, , we study the Neumann problem with boundary

data in the weighted space L*(0¢2, ,do) , where do denotes the surface measure on 642 . We show that

a unique solution u can be found for the Neumann problem provided 0 < & < n—1. Also proven is that the

non-tangential maximal function of Vu existsin L*(0£2, w,do) .
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1 Introduction and main results

In recent years, there has been considerable interest
in boundary value problems in non-smooth domains. Let
£ Dbe abounded Lipschitz domain in R",n=3. The
Dirichlet problem and the Neumann problem with
boundary date in L°(0£2) for the Laplace’s equations
in © are well understood due to the work of
Dahlberg™?, Jerison-Kenig™, Verchota! and Dahlberg-
Kenig™. It was Shen® in 1995 that firstly studied the
L” -Neumann problem for the Schrddinger equation
—Au+Vu=0 in 2, where VeB_ and Q2c R" n=
3 is the region above a Lipschitz graph. He shows that
the Neumann problem exists a unique solution U such
that the non-tangential maximal function of Vu is
inL? (1< p =2). In [7], Tao extends to the Schrodinger
equation —Au+Vu=0 in £, with singular non-
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negative potentials V belonging to the reverse Holder
class B, .

Recall that (2 is a bounded Lipschitz domain in
R'"n=3. Let w,=0,(Q)=Q-Q,|* , where
a>1-n and Q, is a fixed a point on 0£2. In this
paper, we initiate the study of solvability of the
boundary value problems for Neumann problem for
Schrédinger equation —Au+Vu =0 in £ with bound-
ary date in L*(002, ,do), where do denotes the
surface measure on 0¢2. We obtain certain ranges of
a for which the Neumann problem is uniquely solvable.

More precisely, we consider the Neumann problem

—Au+Vu =0, in Q,
a—E: gel?(02 w,), on oL, @
||(Vu) Lz(m,w,,)<
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where V denotes the outward unit normal to 0£2 and
(Vu)" denotes the non-tangential maximal function of
Vu , which is defined by

(Vu)* (Q) =sup{{ Vu(X)|: X e 2:

| X =Ql<256(X)}, )

for QeodQ . We remark that in (1), the boundary
values are taken in the sense of non-tangential
convergence, i.e. lim  Vu(X)V(Q)=g(Q) for
aImosteverer@Qx.ﬁQ’xer(Q) IR

And in (1), V(X) denotes a non-negative locally
L” integrable function on R", which belongs to B, .
As it is known, a nonnegative locally L* integrable
function V(X) on R" is said to belong to B, if
there exists a positive constant C, such that the

reverse Holder inequality

Cq
IV (X) Lm(B)s—'[BV(X)dX , 3)
holds for every ball B in R"[l,

|B

The following is the main results of the paper.

Theorem1 Let 2 be a bounded Lipschitz
R'.n = 3.
L*(002, w,) with O<a<n-1, the Neumann pro-

domain in Then given any Qe
blem (1) has a unique solution. Moreover, the solution
u satisfies

Lgl (Vu)'  w,do =< CLQ| 9 o,do, (4)

where C depends only on n, o and the Lipschitz
character of 2.

We remark that the Dirichlet and Neumann
problems for Laplace equation Au=0 in Lipschitz
domain with boundary date in L*(002,w,do) were
studied recently in [9].

Throughout this paper we will use C to denote
positive constant, which may be different from line to
line, and depend at most on n, the Lipschitz constant and
the constant in (3). We will use ||||p to denote the
norm in L°(60). For Peo2 and r>0, we say
B(P,r) o is a coordinate patch for 042, if there
exists a Lipschitz function @:R"" — R such that,
after a rotation of the coordinate system, we have

2nB(P,r)={(X",x,)eR:x,>p(X")}B(P,r).

In this new coordinate system, we let

AP, r) ={(X",o(X')) eR":[ X' =P |< p},

D(P,r)={(X',x,)eR":| X'=P'|< p,

P(X") <%, <o(X"+ p)}

Recall that 2 is a Lipschitsz domain if there
exists r,=r,(£2)>0 such that B(P,r;))mo2 is a
coordinate patch for any P 0. Clearly, if 0< p<
cr,, we have A(P,r)co£2 and D(P,r)c 2.

The main ingredients of the proofs of the theorem
stated above are (1) the un-weighted L estimates
originated in [10], (2) certain localization techniques
originated in [5], and (3) the representation formulas in
terms of the Green’s and Neumann’s functions.

The paper is organized as follows. In section 2, we
establish the estimates for fundamental solution of the
Schrodinger operator —A+V in R", and our proofs
of the Theorem 1 will be given in section 3.

2 Estimates of fundamental solutions

This section is devoted to the estimates of
fundamental solutions for the operator —A+V. We
will assume that V € B .

Suppose —Au+Vu=0 in B(x,,2R) for some
X, €R", R>0. Then let 77(X,Y) denotes the fun-
damental solution for the Schrédinger operator —A +V .
Clearly, I'(X,Y)=T7I(Y,X). Since V=0, it is well
know that

07 (X,Y)=7I,(X,Y)=

U@, (n=2)| X =Y ["7). (®)

Lemma 1™ Assume X,Y €R" and |X -Y |<
2/m(V, X) . Then
cm(V, X)?
| X =y
with the constant C independent of X and Y.

Given f e LP(0Q), l<p<ow, we define the
single potential as follow

S(f)(X):jmr(x,Q)f(Q)daforx eR". (6)

[V (X, Y) =V Iy (X,Y) [ =

By using well-known techniques from the theorem
of Coifman, et al*?, one can show the following



96

2009

Lemma.

Lemma2® Let fel’(0R), 1<p<w, and
u=S(f). Then ||(Vu)* . =C| ]y g and for
Peog,

ou 1
6_)(i(P) =5 f(Pv;(P)+

pv|. YV, (P.Q)f(Qdo.
The rest of this section is devoted to establishing
the estimate for the Neumann function on (2. Let

S(H(X) =] 1'(X,Q)f(Qdo,
So(H)(X) =] (X, Qf (Q)do,

Then
0 1
—S(f)==1+K)f,
Yy (f) (2 )
0 1
Eso(f)Z(EI‘FKO)f

It is known that
1/2+ K, : *(00Q) — L*(002),
is a Fredholm operator with index zero. One can show
that K — K, is a compact operator on L*(6¢2). It then
follows that
1/2+K:L?(00Q) - L*(60),
is also a Fredholm operator with index zero. It is easy to
see that the operator is one-to-one on L?(0£2). So
I/2+K is invertible on L?(0£) . Hence, the
Neumann problem
-Au+Vu=0, in £,
ou/ov =g, on 0L,
1V) 1l oy <
is uniquely solvable. For Y € 2, welet v'(X) bethe
solution with Neumann date < 77(Q,Y) and
N(X,Y)=7(X,Y)-Vv'(X). (7
Then
{{—AX +V(X)N(X,Y) =6, (X), in £,
ON(Q,Y)/ov =0, on 00.
The following Lemmas is very important to us.
Lemma3™ Let @ be a bounded Lipschitz
domain. Assume k >0 be any integer, then

IN(XLY) = G
{l+m(\/,X)|X—YD |X—Y|n

with the constant C, independent of X, Y and the
diameter of domains 2.
Lemma4™ Let VeB_,
integer. Then there exist 0<d <1, and a positive
constant C, such that, for X,Y,Z e Q2 with |Z -
X|=|X-Y]/10,
IN(X,Y)=N(Z,Y)|=
C, Z-x[
L+ mv, 0¥ [ X =Y [
We end this section with following inner estimates.
[VN(X,Y)|=
C, 1
LmV, ) [ X =Y X =Y

and k>0 be any

(®)

©)

3 The proof of the theorem

This section is devoted to the proof of the theorem,
using the same technique originated in [10], and Lemma
3, decay estimates of Neumann function (9) we can
easily get following Lemma.

Lemmab5 Let u be a solution of Schrédinger
equation —Au+Vu=0 in £ such that (Vu) e
L*(602) and ou/ov=f L*(0£2) on 0. Then for
any Q, €0 and r>0,

|(Vu)’ Pdo sch | f Pdo+

€002,Q-Qy>r

| fIQ-QI" do, (10)

I Qe002,Q-Qyl>r

(CnS]]

Qe002,|Q-Qyl<r
where 0= 4 <n-1.

Proof Fix Q,e0£2 . There exists 1, >0 de-
pending only on the Lipschitz character of 2 such
that, after a possible rotation of the coordinate system,

2nB(Q,,r)={(X,x,)eR":x, >

w (X'} B(Qy, 1), (11)
where i :R"" — R is Lipschitz continuous. We may
assume that y(0)=0, Q,=(0,0).

Let A, ={(X,w(X"): X' |=r}. We now write

f=g+h, where g="fy, ,h="fy; .Let

u(X) =], N(X.Qg(Q)do, (12)
and

u,(X) =] N(X,Qh(Q)da, (13)
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where u, and u, are the solutions of the L°
Neumann problem with boundary date g and h
respectively. Then u=u, +u,.Bythe L* estimate™,

LQW |(Vu,)" [ daSij| hi? do=<
C jm\% | f [ do. (14)

Next, we will show that, for some A,

* 12
J‘Qeaﬂ,\Q\zgr | (Vu1) | dO' =

C

r* Joeaa qp<sr

f QI do, (15)

Clearly, estimate (10) follows from (14) and (15).

To estimate (Vu)" on 002\ A, , first we note
that ou /ov=0 on 02\ A, . Also for X e
and dist(X,A,)=cr, in view of estimate (12), and
Lemma 3, we have

W) =] _INQX)Ig(Qdo=

| C 19(Q)]
@ {L+mV,X)| X -QF [ X -Q["*

[ C—2| fldo=

dor [ X =Q"

C.C

|Xk|n*2 JA5,| f|do. (16)

Here C=(c-1)/c, the last inequality followed
because | X [>cr>c|Q]|, and | X -Q> X |-|Q>
(c-D/c[X|. Let Ej=A, \A,.  whered4=j=
J and 2'r~r,.For QeE,, let

M,(F)(Q) =sup{ F(X)|: X € »(Q) and

| X —Q|=62'r}, (17)
M, (F)(Q) =sup{l F(X)|: X € »(Q) and
| X —Q|=602'r}, (18)

where y(Q)={X € 2: X -Q|< 2dist(X,002)} and
0 is chosen so that for Qe E;, M,(F)(Q) is less
than the non-tangential maximal function of F.
Clearly (Vu,)"=M,(Vu,)+M,(Vu,).

Note that if X ey(Q) and |X -Q|=#62'r
we now use the interior estimate and (9) to obtain

v (X)I=[ _IVN(X,Q)|9(Q)|do =

| C, 9@ 4 —
@ e mv, 0| X -Q I [X -Q[”

Ly g 0@ ldo=
%thfldas

(z?fm Larl ol eré do =
CORS o7
(zjr)nl{I T RIQF o]l 1ty =
fz?rr)nzl{j | f P1QI do},

where 0 =4 <n-1. It follows that
[ IM,(Vu) P do =

c.Cr
e B, 1 1F1Qrdo=
C.C
(Zj)kTriJ.ABJ fF|Q[*do. (19)

For M,(Vu) on E;, weusethe L estimate!™!
on Lipschitz domain D, \ D, , where D, =02n
B.and7 e (2'r,2'"r), to obtain

ou
IE,, M, (Vu,) Pdo SIEj |a—$ Pdo =<

2
IW(DT\DM)WM do. (20)
Integrating both sides of (20) in 7 e (2'r,2/*r)

then yields

j M, (Vu,) Pdo <2% zw\Dzjfz,Wul PdX,
(21)
Jo M (Vu) do<(2, ¥ s [ oy, laX,
(22)

where the second inequality follows from the Cacciopoli
inequality. This, together with (16), gives
[ IM(Vu) Pdo =

(2% [, 1fQFIQ[ do. (23)

It follows from estimates (19) and (23) that
[ 1(Vw) Pdo=
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2 AM,(VU) F +IM, (V) Fido <
C

@y, |1 QrIQrde, (24)
by summation we can get
J, 1wy fdo=—[ [1QFIQ[do.
oo N8
(25)
By covering technique we can also show that
fis, VW) Pdo=2[ | T@QFQ do.
(26)

By(25) and (26), we get

. C
jag\Aa, (V) |2d0 SFJABr | Q) |2| Q |ld0'-
(27)
Thus we have

12
IGQ\A8r|(vu) fdo=

* 12
ZJ‘M\ASJ(Vul) Pdo +

2 LQ\ASJ (Vu,) Pdo <=

C
.L‘.O\Aar| f |2da+r7jAar| f(Q)FIQ"do.

By scaling, estimate (10) follows easily. The proof

is complete.

Remark 1 It follows from (10) that, if 0<A<
n-1,

* 12 -
Ioeaawo Qo\>f|(vu) [do=
ot 1Q-Q, | +r

Now, it is in the position to give the proof of
theorem. It will follow from (28), as well as the
solvability of the L° Neumann problem for

1< p < 2P Indeed, by Holder inequality, we have
LQ| f wdo=
([ 1T Pdo) (], @, do) * =C| T,

the last inequality holds because LQ o, %da<oo, if
we choose some p=p(a)e(L2). So we have (012,
w,do)c L?(02) for some p=p(a)e@L2), the
uniqueness follows directly from the uniqueness in L.
To prove the existence, we fix g e L*(002,m,d0),

where @, (Q)=|Q—-Q,|”. Let u be the solution of

Schrodinger equation in 2 such that (Vu)’ < L (6£2)

and ou/oV =g on 0 .We need to show that
1D Uiy SC NIy - 29
To this end, we let

9(Q).for Q e 02\ B(Q,.1/ j),
Q)=

gmmB(QO%),for Q€002 N B(Q,,1/ ).

It is easy to see that g, e L*(0€2), g; —>g in
L (0R,w,d0) as j—>o.

Let U; be a solution of Schrédinger equation in
0 suchthat (Vu;) e ?(0£2) and du;/ov=g; on
0€2. Choose A e(a,n—1). We multiply both sides of
(28) by r“* and integrate the resulting inequality in
r € (0,) . This gives

[ JVu) PIQ-Q, [*do =

© a-1 * 12
cjo r {LQ\B(QOJ)HVUJ.) Pdodr <

gt (1Q-Q1 Y
cf,r {fm[m] '

19,(Q) FdoYdr=C| [9,(QF-

o0

Q-1
g [IQ Q0|+f]

[ _19,@QFIQ-Q,[*do. (30)

Finally, we can proof that since g; —>g in
L"(0£2) for some p>1, then we have (Vu;)"—
(Vu)* in LP(0£02). Thus there exists a subsequence
{u;} such that (Vu; )" —(Vu)" ae. on 002. This,
together with (30) and Fatou’s Lemma, gives the desired
estimate (29). The proof is completed.
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