Nonlinear Sciences > Pattern Formation and Solitons

Computational Modelling of Nonlinear Calcium Waves

Xin-She Yang

(Submitted on 28 Mar 2010)

The calcium transport in biological systems is modelled as a reactiondiffusion process. Nonlinear calcium waves are then simulated using a stochastic cellular automaton whose rules are derived from the corresponding coupled partial differential equations. Numerical simulations show self-organized criticality in the complex calcium waves and patterns. Both the stochastic cellular automaton approach and the equation-based simulations can predict the characteristics of calcium waves and complex pattern formation. The implication of locality of calcium distribution with positional information in biological systems is also discussed.

Subjects:	Pattern Formation and Solitons (nlin.PS) ; Analysis of PDEs (math.AP); Adaptation and Self-Organizing Systems (nlin.AO); Biological Physics (physics.bio-ph); Subcellular Processes (q-bio.SC)
MSC classes:	35B36
Journal reference:	X. S. Yang, Computational modelling of nonlinear calcium
	waves, Applied Mathematical Modelling, Vol. 30(2), 200-208 (2006).
Cite as:	arXiv:1003.5370v1 [nlin.PS]

Submission history

From: Xin-She Yang [view email] [v1] Sun, 28 Mar 2010 14:20:50 GMT (268kb)

Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.

Download:

- PDF
- PostScript
- Other formats

Current browse context: nlin.PS < prev | next > new | recent | 1003

Change to browse by:

math math.AP nlin nlin.AO physics physics.bio-ph q-bio q-bio.SC

References & Citations

• CiteBase

