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On  the  Input-Output Stability of Time-Varying 
Nonlinear  Feedback Svstems-Part i 11: Conditions 

Involving Circles  in the  Frequency  Plane 
and Sector  Nonlinearities 

Abstract-The object of this paper is  to outline a  stability  theory 
based  on  functional  methods.  Part I of the paper was devoted to  a 
general  feedback  con&pration.  Part I1 is  devoted  to  a  feedback 
system consisting of two elements,  one of which is  linear time-in- 
variant,  and  the  other nonlinear. 

An attempt  is  made  to unify several  stability  conditions,  including 
Popov’s  condition, into  a single  principle. This principle is  based on 
the concepts of conicity and positivity, and provides a  link with the 
notions of gain and  phase  shift of the  linear theory. 

Part II draws on the  (generalized) notion of a  ‘‘sector  non- 
linearity.” A nonlinearity N is  said  to  be INSIDE THE SECTOR {a, 9 ) if it 
satisfies an inequality of the type ( ( N x - ~ x ) ~ ,  (N~-px)~l<O.  If N 
is  memoryless  and  is  characterized by a  graph  in  the plane, then 
this  simply means  that  the  graph  lies  inside  a  sector of the plane. 
However, the  preceding  defhition  extends  the concept to  include 
nonlinearities with  memory. 

There  are two main  results.  The lint  result,  the CIRCLE THEOREM, 
asserts in part  that: If the nonlinearity is  inside  a sector { a, 6 1, and 
if the  frequency  response of the linear element avoids a “critical 
region’ in the complex plane,  then the closed loop is bounded; if 
01>0 then the critical region is a disk whose  center  is haljwoy be- 
tween  the  points - l / a  and -l /p,  and whose  diameter is greater 
than the distance between  these  points. 

The  second  result  is  a  method for taking  into  account  the  detailed 
properties of the  nonlinearity  to  get improved  stability  conditions. 
This  method involves the removal of a  “multiplier”  from  the  linear 
element.  The  frequency  response of the  linear  element  is modified 
by the removal, and, in effect, the  size of the critical  region is re- 
duced. Several conditions,  including  Popov’s  condition, are  derived 
by this  method,  under  various  restrictions on the  nonlinearity N ;  the 
following cases  are  treated: 

(i) N is  instantaneously  inside  a  sector {a, a ) .  
(i) N satisfies  (i)  and  is  memoryless and time-invariant. 

(iii) N satisfies (ii) and  has  a  restricted slope. 

1. IKTRODUCTIOX 
HE feedback  s?-stem of Fig. 1 consists’ of a linear 
time-invariant  element H and a (not necessarily 
linear  or  time-invariant)  element N .  I t  n-ill be 
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1 X single input x, multiplied  by  real constants a1 and a*,  is added 

single-input  system, in  which the  element closest to  the  input is 
in a t  two points. By setting a1 or a s  to zero, it is  possible to  obtain a 

either  the linear element or the  nonlinearity.  The  terms w l  and ZIP are 
fixed bias  functions, which will be  used to  account for the effects of 
initial  conditions. The  variables el and e2 are  outputs. 

x- - - 
Ei \ -LINEAR  TIME-INVARIANT 

+ a x + w  
2 2  

Fig. 1. feedback  system. 

(a) (b)  

Fig. 2. If LYxit) vs. x(tj and H+j lie in the  shaded regions, and if 
the  Syquist  diagram of H(&) does  not  encircle the critical disk, 
then  the closed loop is bounded. 

supposed, for the  moment,  that N has no mernoq-. 
These  assumptions  are  among,  the  simplest xvhich en- 
sure  that  the  system is both 

(i)  general  enough  to  have many applications 
(ii)  complicated  enough to  exhibit  such  character- 

istic  nonlinear  phenomena as jump  resonances, 
subharmonics,  etc. 

The  object here is to find stability  conditions  for  the 
closed-loop system.  For  practical  reasons,  it is  desirable 
to express  these  conditions  in  terms of quantities  that 
can be  measured  experimentally,  such  as  frequency re- 
sponses,  transfer  characteristics,  etc.  In  particular,  the 
follon-ing question is of interest:  Imagine  that  the  graph 
of N lies  inside a sector of the  plane, as shown in  Fig. 
2(a), and  that  the  frequency response of H is plotted 
in the complex  plane;  can  the  complex  plane be divided 
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into  regions  that  are  “safe”  or  “unsafe”  as  far as stabil- 
ity  is  concerned? 

I t  will be  shown that,  with  certain  qualifications,  such 
a  division  is possible. In  fact  it  has  already been  shou-n 
in Par t  I that  such  regions,  called  “conic  sectors,”  exist 
in a  quite  general  sense.  Here  these  general  results will be 
applied  to  some  concrete  situations,  involving  frequency 
responses,  etc.  (Fig. 2,  which  illustrates  the  simplest 
of the  results  to  be  obtained  here,  gives  some  idea of 
what  is  being  sought.) 

2. STATEMENT OF  THE  PROBLEX 

The  purpose of this  section is to  define H a n d  N, and 
to \\-rite  feedback  equations. H and N will be  repre- 
sented  by  input-output  relations  or  by  operators, in 
keeping  with  the  theory  outlined in Part  I. 

DEFINITION : R [0, m )  i s  the  space of real-valued func- 
tions on the  interval [0,  m). 

L,, w h e r e p = l ,  2 ,  . . . , is  tke  space  consist.ing of those 
x in R [0, co) for  which  the  integral &’ 1 x ( t )  I Pdt i s   f in i te .  
I n  addition,  for  the case p = 2 ,  it   is  assumed  that L2 is an 
inner-product  space,  with  inner-product 

( x ,  Y> = s = + ( o Y ( w t  
0 

and norm Ilxl12. The  symbol llxIl, with0u.t subscript, will 
often be used  instead of lix112. 

La i s  the  space  consisting of those  functions x in 
R[O, =) that  are  measurable  and  essentially  bounded. La 
i s  assumed to be a normed  linear  space,  with norm 

N o  distinction  will be made between functions  diflering 
over sets of zero measure. 

Those  definitions  which  were  introduced  in  Part I 
will only  be  summarized  here.  Following  the  convention 
of Par t  I ,  the  subscripted  symbol x t  denotes  a  function 
in R[O, m )  truncated after [0, t ) .  The  space Lpe, where 
p = 1, 2, - - , co , is  the extension of L,, i.e., 

L,, = {x x E R[O, m) and xt E L, for all t 2 0). 

An extended norm I I x ~ ( , ~  is  defined on Lpe,  where 
=Iix;Ip if x E L ,  and IIxIIPe= 00 if x e L , .   T h e  symbol 
llx1126 will usually be abbreviated to I!xlle. 

The  concept of a relation H on Lpe,  with domain 
Do(H)  and range Ra(H)  was  introduced  in  Part I .  A 
relation H on L,, is L,-bounded if H maps  bounded  sub- 
sets of L,, into  bounded  subsets of L,,. His  L,-continu- 
ous if,  given any x in D o ( H )  and  any A>O, there  is  a 
6>0  such that,  for any y in Do(H) ,  if ~ ~ x - y \ ~ , , < 6  then 

Part  I1 will be  devoted  entirely  to  finding L2 condi- 
tions  (for  boundedness  and  continuity),  since  these  are 
easier  to  derive  than  the  other L, conditions.  However, 
most of the  results of this  paper  have  been  extended  to 
the La norm, in [lb]. I t  has  been  found  that,  in  most 

I I H x - H Y ~ ~ , , < A .  

cases,  the L, conditions  imply  La-boundedness or con- 
tinuity. For physical  applications  the  most  appropriate 
definitions of boundedness  and  continuity  are, of course, 
obtained  in  the L, norm. 

DEFIXITIOY: Let @io be the  class of relations on Lpc hav- 
ing the  property  that  the zero element,  denoted 0, is in 
Do(H) ,  a d  H o  = 0. -An operator H on L2, is any  function 
of the  tppe H :  Lz,+Lz,. 

i f  it  commutes  with  all  delays.  That is, f o r  t 2 0  let T, be 
the  operator on L2, given  by:   T,x( t )   =x(t-r)   for  t r ~ ,  
and  T,x(t) = 0 for  t <T. Then  HT ,  = T,H for  all r 2 0. 

H i s  MEMORYLESS if H x ( t )  is a f z m c t i o n  of x ( t )  (;.e., 
only of x ( t ) )  f o r  all x in L2, and  for  all  t  20.  

2.1. The  Operator  Classes 31 and 6: 

DEFINITIOS: A92 Operator H on L P ~  i S  TIME-INVARIANT 

DEFIXJTIOX: 31 i s  the  class of operators otz Lze having 
thefollowing  property: If N i s  in x then  there s a funct ion,  
N :  RealsdReals ,   sat is fy ing? 

N s ( t )  = ,I-(.Y(t)) (X E L2,; t >_ 0) (1) 

and  hazing  the  following  properties: (i) N ( O )  =0 ,  (ii) 
i S ( x )  I I c o n s t .  I x (  , and (iii) f o r   a n y  real x, &Y(x’)dx’ 
is   f in i te .  

Xn operator in 32. is memoryless,  time-invariant,  not 
necessarily  linear,  and  can  be  characterized  by  a  graph 
in the  plane.  The  letter will indicate  the  graph of N. 

DEFINITION. 6: i s  the  class of those  operators H o n  L2, 
satisfying a n  equation of the  type2 

H.I-(~) = h&(t) + k(t  - T ) z ( T ) d T  (x E Lze; t 2 0) ( 2 )  Sot 
in which ha i s  a real  constant, and the  impulse  response h 
i s  a jzmction in L1 with  the  property  that, for some uo <0, 
h( t )  exp (--sot) i s  also in LI. 

Operators in d: are  linear  and  time-invariant. 

2.2. Feedback Equations 
Consider  the  feedback  system of Fig. 1, but  with  two 

modifications:  (i) N is not necessarily  memoryless; 
(ii) al and a? are  operators on Lze, multiplying x .  (This 
amount of generality will be  needed  for  some of the 
intermediate  results;  ultimately,  the  interesting  case  is 
that  in which N has no memory,  and a1 and a2 are real 
constants.)  The  equations of this system  are 

el = alx + w1 - Ne2 (3 4 
e2 = a2-2: + 122 + Hel (3b) 

in which i t  is  assumed  that: 

H i s  an operator in 6: 
N is a relation in 630 

satisfying (1) is in fact  an  operator on h e .  Similarly,  every  mappmg 
2 I t  can  be verified that  every  mapping of the  type N:Lz,+R[O,.m) 

H:L?.+.R[O,w) satisfying (2)  is an  operator on La [see (B1) of 
Appendlx Bl. 
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x in Le i s  an inpu t  
el and e2 in Lze are  outputs 
w1 and w2 in L2 are  $xed  biases 
either al   and a2 are  real  constants, or, more  general1yl3 
a1 i s  a relation on L2, having  the  property  that 
Ilalx!Ie<const. I I x ~ ~ ~ ,  and  s imilar~>ffor  a2. 
REMARK: If, to  begin with,  the  linear  element  satis- 

fies a  state equation,  then Hel is set  equal  to  the  “zero- 
initial-condition  response” of the  state  equation,  and 
w2 is set equal  to  the  “zero-input  response.” 

The  closed-loop  relations  which  map x into el and e2 
will be  denoted E1 and E*. The  objective  here  is: Find 
conditions on N and  H which ensure  that E1 and E2 are 
Lz-bounded  and  Ls-continuous. 

3. CONDITIOXS FOR CONICITY AND POSITIVITY 
This  section  has  some  preliminary  results,  which will 

be  needed  later in the  analysis of stability.  The follow- 
ing  questions  are  fundamental  to  this  analysis.  Under 
what  conditions is an  operator conic  or  positive?  Under 
what  conditions  is  the  composition  product of two  oper- 
ators  conic  or  positive? 

The  definitions of conicity  and  positivity  were  intro- 
duced in Par t  I. They  are  repeated  here, for the special 
case of relations on Lfe. 

DEFINITION: Let H be a  relation in ( R o .  H i s  INTERIOR 
CONIC i f  c and r 2 0 are  real  constants  and  the  inequality 

l l ( B x ) t  - cxt l lIr l lxt l l  (x E D o ( R ) ;  t 2 0) (4) 

holds. H i s  exterior  conic i f  (4) holds  with  the  inequality 
sign reversed. c will be called  the  center  parameter of H ,  
and r will be called  the radius  parameter of H. 

H is INSIDE (OUTSIDE) THE SECTOR { a ,  p 1 if a 5 0  and 
i f  the  inequality 

((HZ - C X X ) ~ ,  (Hx - D X ) , )  5 0 ( X  E Do(H); t 2 0) (5) 

holds  (with  the  inequality  sign  reversed). 
H is POSITIVE i f  it  satisfies  the  inequality  (xt, ( H x ) ~ )  

>Ofor all x in D o ( H )  and  all t 2 0 .  
In  Par t  I,  the  concepts of conicity  and  positivity  were 

subdivided  into  categories  such as “instantaneous” 
conicity,  “incremental”  conicity,  etc. The  definitions of 
these  terms  are  listed  in  Appendix 4. 

REMARK: The following conditions  are  equivalent: 
(i) H is interior  conic  with  parameters G and r.  (ii) H 
is inside { c - r ,  c + r ) .  

3.1. Nemoryless,  Time-Invariant  Nonlinearities 
Consider  the  operator  class x; the  conditions  for N 

in 31 to be  conic,  positive,  etc., are  simply  the  “instan- 
taneous”  conditions of Appendix A. Some of these  con- 
ditions  are  illustrated  in  Fig. 3. In  particular, N is  inside 
the  sector { a ,  8) if its  graph lies in a  sector of the  plane 
bounded  by  lines of slopes a! and 8;  N is  incrementally 

( a )  N IS INSTANTANEOUSLY (b) N IS  POSITIVE 

INSIDE A SECTOR {d,p} 

Fig. 3. Permissible  regions (shaded) for instantaneously confined 
nonlinearities. 

(a) t! IS INTERIOR CONIC (b) H IS EXTERIOR CONIC ( C )  H IS POSITIVE 

Im 
A 

Im 
A 

I r n  
A 

Fig. 4. Permissible  regions (shaded) for the frequency 
response H($). 

inside {a, 01 if, in addition, N satisfies  the  slope  restric- 
tions a< [-\“(X) - ~ ~ ( y ) ] : / ( x - y )  I p .  N is  positive if its 
graph lies in  fhe first and  third  quadrants; N is incre- 
mentally  positive  if, in addition, N is  nondecreasing. 

3.2. Linear  Time-Invariant  Operators 
Consider  the  operator  class 2; i t  will be  shown, 

roughly  speaking,  that  a  conic  sector  has  a  counterpart 
in the  frequency  plane,  in  the  form of a circular  disk 
(see Fig. 4). This  disk  degenerates  into a half-plane  in 
the case of a  positive  operator. 

DEFIWITIOW : Let s = u+jw  denote a point in the  complex 
plane.  The LAPLACE TRANSFORM H(s)  of H in 2 i s  

R ( s )  = h, + sorh(t) exp ( - s t )& (u 2 0) (6) 

(The  integral on the  right-hand  side of ( 6 )  exists  and  is 
analytic  for u 2 0  [See (B l )  of appendix B].) 

DEFINITION: T h e  NYQUIST DIAGRAM of H(s)  is a 
curve in the  complex  plane consis f ing of: (i) fhe  image of the 
jw-axis  under  the  mapping H(s ) ,  and (ii) the  point h,. 

LmiMni.4 1. Let  H be an operator in C, and let c and r 2 0 
be real  constants. 

(a) If H(s)  satisfies  the  inequality 

1 R( j4  - CI I r (w E ( - p , m ) )  (7) 

then H is  incrementally  interior  conic  with  center  param- 
a The more  general assumption will be needed in Section 5 only. eter c and radius  parameter r .  
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(b) If H ( s )  safisjes  the  ineqzlality 

I ~ ( j w )  - c1 2 r (w E (-=J,=J)) (8) 

and i f  the Nyquist diagram of H(s)  does  not  encircle 
the  point  (c, 0 ) ,  then H i s  incrementally  exterior 
conic  with center parameter G and  radius  param- 
eter r . 

(c) If Re{H(’jw)}>O f o r  w E ( - m , m )  then H i s  
incrementally  positive. 

The Proof of Lemma 1 is  in  Appendix B. 
REMARK. The  gains  g(H)  and g(H)  n-ere  defined in 

Par t   I .   I t  follows from  Lemma  l(a)  that if j HCjw) I Sc, 
then g ( H )  = g ( H )  IC .  

3.3. Composition  Products  and Sector Prodacts 
The composition  product of two  positive  operators 

need not  be  positive.  Those  special  cases  in  which  the 
product  is  positive  are of interest  because  they  give a 
tighter  bound  on  the  composite  behavior  than 11-ould be 
obtained  in  general.  (They  form  the  basis of the  factor- 
ization  method of Section 5.2.) 

Similarly,  those  special  cases  in  which  the  product of 
two sector  operators lies inside the  “product  sector”  are 
of interest. 

DEFINITION: T h e  PRODUCT SECTOR (al ,  1 X {a?, p 2 }  
is the sector f a ,  b }  , where [a, p ]  is the interz!aZ of tke 
reals  dgfined  by [a, j3] = ( x y  1 z E  [al, P I ]  and yE [a?, 021 } . 

In  other 11-ords, product  sectors  behave  like  point- 
wise products of the  corresponding  real  intervals (see 
Fig. 5). 

I t  is  easy  to  show  that if both  operators  are  memory- 
less,  say if both  operators  are in %, then  their  product 
has  the  above  mentioned  properties.  [This  can  be  shown 
by  expressing  the  ratio X1(:V2(x))/x as  the  product 
( X l ( y ) / y )  X(:V2(x)/x), where y A 1 V 2 ( x ) . ]  IIore difficult 
are  cases  in  u-hich  one  operator is in X and  the  other  is 
in 2, as  in  Lemmas 2 and 3.  

3.4. A Memoryless  LVonlinearity  and  a  Firsf-Order 
Mzdtiplier 

The following lemma  is  the  basis  for  Popov’s  condi- 
tion  (Section 5.1) .  

LEMMA 2. Let N be an operator in. X, K be an operator 
in C, and let the  Laplace  transform of K be K ( s )  = k X / s + X  
where k > O  and X>O. 

(a) If N is positive4  then N K  is positive. 
(b) If ‘ N  is inside5 a sector { a ,  p ] then N K  is   ins ide  

the  product sector { a ,  8)  x { 0, k } .  

The proof of Lemma 2 is in  Appendix C. (Sote   that  K 
itself is  positive  and  inside { 0, k f , since KCjo) lies 
entirely in the  right-half  plane  and  since j Kcjw) - $ k /  
= $ k . )  

-c 
0 1 2 3 4  

(b) 

& -1 0 1 -2 -1 0 1 2 

Fig. 5. Products of intervals. 

Re 

Fig. 6. &C? operators.  (a) Typical pole-zero pattern. (b) Circle of 
confinement of KCjw). 

3.5.  A Mernoryless L\Tonlin.earity and an &e Multiplier 
-4 situation  resembling  Lemma 2, but  with N more 

restricted  and K more  general,  is  considered  next. K is 
taken  to  be a sum of first-order  terms, of a  type  that 
can  be  realized as  the  driving-point  impedance of an 
RC network (see Guillemin [ 2 ] ,  ch. 4). 

DEFIWTIOS: Let &C? be the  class of those  operators K 
in 6: having  Laplace  transforms of the  form 

where k i > O ,  X i > O ,  a.nd K (  m) 2 0  are r e d  constants. 
An  operator K i n  has  poles  and  zeros  alternating 

on the  negative-real  axis,  n-ith  a pole nearest  but  not  at 
the  origin.  The  frequency  response of K lies  inside  a 
circle in  the  right-half  plane,  located  as  shown  in  Fig. 
6(b); i t  follon-s that  K is  positive  and  inside  the  sector 
{ K (  oc ), K ( 0 )  1 .  (Observe that  

LEMXA 3. Let N be an operator in X, and K be an 
operator in &e. 

(a) I f  N i s  incre.nzen.tally posifiae  then N K  is positive. 
(b) Lf N i s  increnzen.fally  inside  the sector {a ,  p 1 then 

N K  is  inside  the  producf sector { a ,  p }  X {K(a), 
K(0)  1 * 

* i.e., rN(s)>O. 
5 Le., a<N(x) /s<f i .  

In  other  words,  multiplication  by K affects  the  com- 
posite  sector as if K had  no  memory.  The proof of 
Lemma 3 is in Appendix D. 
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4. CIRCLE  CONDITIONS FOR STABILITY 

Consider now the  main  problem of this  paper,  namely, 
the  problem of stability  for  the  loop of Fig. 1. Suppose 
that  N is a relation  (which  may  or  may  not  be  memory- 
less) inside  a  sector { a,  8) .  What  conditions on the 
frequency  response H ( j w )  are sufficient  to  ensure  bound- 
edness of the closed loop? I t  will appear  that  the follow- 
ing  “circle  conditions”  are  sufficient: 

DEFINITION: HCjw) will be said to  SATISFY THE CIRCLE 

where a<L?, p>O, and 6 > O  are real constants,  if   the  fol- 
lowing  conditions  hold: 

COXDITIOSS FOR THE SECTOR { f f ,  p } ,  KITH OFFSET 6, 

CASE l ~ .  [f a >0,  thelz 

1 1  1 1  
B(jbJ)+- -+- > -  --- + s  

J a  2- A a  2 
(w E (- ,x )) (10) 

and  the  LVyqzlist  diagram of H(jw) does not encircle  the 
point -4(1/a+l/p).  

CASE 1 ~ .  Lf a <0, then 

(w E (- x7 =I). (11) 

CASE 2. I f  a=O, then Re ( HCjw) } > - (l/p) +6 f o r  

In  other  words,  the  complex  plane is divided  into  two 
regions,  shaped  either  like  a  circular  disk  and  its  comple- 
ment,  or like  two  half-planes.  (The  case a>O is  illus- 
trated  in  Fig. 2.) One of the regions will be  called 
“permissible”  and  the  other will be  called  “critical.” If 
HCjo) does  not  enter  or  encircle  the  critical  region,  then 
the closed  loop is bounded.  If, in addition, N is incre- 
mentally inside ( a ,  , then  the closed loop is continu- 
ous.  These  results  are  formalized in the following theo- 
rem : 

w € ( - = ,  m ) .  

-4 CIRCLE THEOREM. SlLppOSe that 
(I) N is a relation in 630, (incrementally)  inside  the 

sector { a  +A, p -4) , where p > 0. 
(11) H is an operator i n  g., which  satisfies  the circle 

conditions  for  the sector {a ,  p }  with  ofset  6. 
(111) 6 and A are  non-negative  constants,  at  least  one of 

which i s  greater than zero. 

Tken  the closed-loop  operators El and E2 are  L2-bounded 
(L2-continuous). 

The Circle  Theorem  is  based  on  Theorem 2 of Par t  I. 
I t  was  assumed  in  Theorem 2 that  al and a2 were  real 
constants.  However,  with  only  minor  changes  in  the 
proof, i t  can  be  shown that  Theorem 2 holds  more  gen- 
erally  if al and a2 are  relations  on LZe, provided al and a? 
satisfy  inequalities of the  type  [lalxll.<const.  The 
Circle  Theorem  then follows immediately  with  the  aid 
of Lemma 1 of Part  11. 

CONTINUIW DISK BOUNDEDNESS DISK 
FOR (b)- FOR (a) AND (b). 

Fig. i .  Critical  disks  for  Example 1. (Broken  curve  indicates  edges 
of jump region in H(+) plane.) 

The Circle  Theorem  can  be  viewed  as  a  generaliza- 
tion of Nyquist’s  criterion,6 in which  a  critical  region 
replaces  the  critical  point.  For a given N there  are  two 
critical  regions,  one  for  boundedness  and  one  for  con- 
tinuity. I t  can  be  shown  that  the  continuity  region  al- 
ways  contains  the  boundedness  region (see Example l 
and  Fig. 5). 

The Circle  Theorem will serve  as  the  generating  theo- 
rem  for  the  rest of this  paper; i.e., the  remaining  results 
will be  obtained as corollaries  to  the  Circle  Theorem by 
variously  constraining  the  form of N .  In  particular,  the 
following corollary is obvious. 

4.1. 4 Circle  Condition  for  Instantalzeous  ,Vonlinearitiesi 
COROLLARY  1. Xf ( I )  N in OXo is instantaneously  (incve- 

mentally)  inside  the sector { a + A ,  D - 4 }  where fl> 0 ,  and 
if conditions (11) and (111) of the  Circle  Theorem hold, 
then E1 and Ez are  L9-bounded  (L2-continuous). 

EXAMPLE 1.  (a)  Let :ITo be the  relation  shown  in  Fig. 
7(a),  and N be  the  relation in m0 defined by the  equation 
Nx(t )  = [l +sin2 ( t ) ]   - X O ( x ( t ) ) .  Find  the  critical  regions 
for  boundedness  and  continuity. (b) Repeat for the 
function  shown in Fig.  7(b). 

(a)  Observe that  ;Jro is  inside the  sector  1/3, 1 ] and 
that  the  time-varying  gain  [l+sin2 ( t ) ]  is  inside the 
sector { 1, 2 1. I t  follows that  N is inside  the  product 
sector, { 1!3, 1)  X { I ,  2 1 = { 1/3, 2 1 .  Corollary 1 there- 
fore  implies that   the critical  region  for  boundedness is a 
disk,  as  shown in Fig. 7. However,  since N is multi- 
valued,  and  therefore  not  incrementally in any  sector, 
Corollary 1 provides  no  information  about  continuity. 

(b) The  same  results  as in (a)  are  obtained  for  bound- 
edness. In  addition, N is incrementally  inside { 1/6, 4}, 
and  a  continuity  disk is obtained,  as  shown in Fig. 7. 

More accurately, of the sufficient part of N?;quist‘s criterion. 
7 Similar or closely related circle conditions were found  inde- 

pendently  by  the  author  [la],  Sandberg [j], Sarendra  and Goldwyn 
[6] ,  and Kudrewicz [7]. 
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Observe  that  the  nonlinearity N in  Corollary 1 cap2 
be  time-varying  and can have  memory. In  fact,  very 
little  has  been  assumed  about  the  detailed  character of 
N .  The price  paid for  this is that  Corollary 1 is  often 
conservative,  i.e.,  the  critical region is too  large.  This is 
especially true of the  boundedness  condition (see Exam- 
ple  2). The  continuity  condition  probably  gives a quite 
fair estimate of n-hat  to  expect.  In  fact,  an  approximate 
analysis,  based  on  the  harmonic  balance  method (cf. 
Hatanaka  [SI),  suggests  that  continuity  breaks  down in 
the follo\ving way:  There is a zone,  inside the  critical 
continuit);  disk, in lvhich jump-resonance  phenomena 
occur.  The zone is not  much  smaller  than  the  continuity 
disk.  Furthermore,  the  magnitudes of jump  resonances 
depend  on  the  Syquist  diagram  behavior inside the 
continuity  disk. 

5 .  CONDITIONS WITH TRAKSFERRED ~IULTIPLIERS 

The  next  two corollaries  can  be  viewed as attempts  to 
reduce  the size of the  critical  region, at  the  cost of added 
restrictions  on N .  In  certain  cases, i t  will be possible to 
remove  a  “multiplier” K from the linear  element, be- 
fore applL-ing the Circle  Theorem.  The  removal of K 
n-ill shift  the  frequency  response of the  remainder, 
Hlcjw),  an-ay  from  the  critical  region.  Thus  the  effective 
size of the critical  region will be  reduced. 

5 . 1 .  Popov’s  Condition 
Consider  the  feedback  system of Fig.  1,  under  the 

same  conditions  as in Corollary 1, bu t  11-ith the  added 
constraint  that N is  a  memoryless,  time-invariant  oper- 
ator.  The follou-ing condition for boundedness (not con- 
tinuity)  involves  the  removal of a  first-order  multiplier 
from H.  

COROLLARY 2. I f  

N i s  an operator in X, i m i d e  the sector { a ,  /3 1 
where /3 > 0. 
H i s  an operator in 6: that  can  befa.ctored  into a 
product H =  KH1, where HI and K are in 2, and 
K ( s )  = A/(s+X) where X > 0. 
HI satisfies  the  circle  conditions for  the  product 
sector { a ,  p }  X { 0, 1 } with oflset 6 ,  where 6 > 0. 
at = 0 and et is in L2, where  denotes  the  derioa- 
l ice on [0, E), 

Then  E1 and E2 are  L2-bounded. 

RExXRIiS: (i) For a> 0, Condition 111 simply  means 
that  Re { ( jw+X)H( jw)  ] 2 -h,:’/3+6. (ii) Condition 11: 
limits  the  result  to  that configuration  in  which  the  direc- 
tions of f l o ~  is  from the  input  to H to N .  

PROOF OF COROLLARY 2. The  feedback  equations n-ill 
be  transformed, as illustrated  in  Fig. 8; i.e., H will be 
split  into  a  product, H= KH1, and  the  multiplier K n-ill 
be  transferred  into a composition  with N .  I t  n.ill then 
be shon-n, in Step 1, that  the  transformed  equations  are 
bounded,  and, in Step 2, that  they  are  equivalent  to  the 
original  equations as far as stability is concerned. 

Fig. 8. -A transformation. 

Letting ZQ’ = w.+X-%?, and recalling that  az = 0, con- 
sider  the  equations of the  transformed s);stem of Fig. 8, 

e; = zll + (11x - NKe; (1 2a) 

e2’ = Z D ~ ’  -I- Hlel’ (12b) 

Let E: and E; be  the closed-loop relations for (12a)- 
(12b). 

STEP 1. El’ and &’ are L2-bounded. This follows  from 
the Circle  Theorem \Those hypotheses  are  satisfied  be- 
cause: wg‘ is in Lz by  assumption 11,’; NK is  in the  prod- 
uct  sector { a, 01 X { 0, 1 } by  Lemma 2 ; and N K  satis- 
fies the  appropriate  circle  conditions. 

STEP 2 .  I t  \vi11 be  shown (belon-) that  

E1 = El‘ (134 

E2 = KE; U3b) 

Since &‘ and &’ have  been  proved  L2-bounded,  and 
since K is certainly  L?-bounded,  it follows that  El and 
& are  L2-bounded. 

To prove  (13b), recall that  & and E2’ are  subsets (of 
a product  space), so tha t   i t  is  enough  to  establish  that 
each  contains  the  other.  Suppose  that (x, e2) is an ele- 
ment of &; by definition  of E,, there  is  an el in Lfe satis- 
fying  (3a)-(3b) ; let el’ =el and e9, =w2’+H1el. Direct 
substitution  shows  that ( x ,  el’, e2’) satisfies  (12a)-(12b), 
so that  ( x ,  e?’) belongs to E;. Substitution also  shows 
that  e2 = Ke.‘, so that  ( x ,  e.) is in KE2‘. Since (x ,  ez) is an 
arbitrary  element of E?, i t  follows that  KE; contains 
E?. I t  can  similarly  be  shoxn  that E. contains KG’, so 
that  (13b)  holds. The proof of (13a) is similar. Q.E.D. 

EXAMPLE 2. Let N be the  operator in 31 whose graph 
is shown in Fig. 9(a),  and  let H ( s )  = k / ( s + X ) ( s + p ) .  For 
what  values of R is the closed-loop Lz-bounded?  Com- 
pare  Corollaries 1 and 2. 

Here N is inside { 0, 1 1 ,  so the  critical  region is a  half- 
plane,  Re { . < - 1 + 6, in both corollaries. In  Corollary 
2 let K ( s )  =X/(s+X) and Hl(s) = k / X ( s + p ) ;  the follow- 
ing  estimates  are  obtained: 

Corollary 1: - X p < k < @ + p ) ( X + / * + 2 d m  
Corollary 2 :  - X p < k  

Corollary 2 is  less conservative  than  Corollary 1, as i t  
shows  the closed loop to  be  bounded  for all positive k .  

Figure 10 also  illustrates  the following point:  For 
a 5 0 ,  both corollaries  predict the  same  critical  region; 
however,  in  many  cases of interest, Hlcjw) is further 
from the  critical region than H(ju). 
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(0) (b) 

Fig. 9. .An example of Popov’s  Condition.  Arrows  indicate  shift 
away  from  critical region. 

(a)COROLLARY 1 (b) POPOV’S METHOD ( c )  COROLLARY 3 

Re Re 

Fig. 10. Xyquist  diagrams for Corollaries 1-3. 

5.2. The  Factorization  Xethod 
The proof of Corollary ’2 suggests a method for gen- 

erating a class of Popov-like  conditions.  The  method 
consists of a factorization of H into H = K H l ,  followed 
by  the  transformation of (3a)-(3b)  into  (l2a)-(12b) 
folloxed  by  an  application of the Circle  Theorem.  Vari- 
ous stability  conditions  are  produced  by  variousl~r 
choosing the  multiplier K. 

The  method  has  two  preconditions: 

(Ia)  Either K-l exists or a2 = 0. 
(Ib)  There is a w2‘ in La such  that Ked2’) = w2. 

These  preconditions  ensure  that (3) are  transformable 
into  (12).  Sote  that  if K-I exists,  then a2 need not  be 
zero;  however, in that  case,  (12b) must  be modified by 
the  addition  of a term a i x  where a ~ x = K - ’ a 2 x  (that is, 
a2/ is a relation on LZJ .  

The  method is worthwhile  only if i t  gives a smaller 
effective  critical  region than  Corollary 1. This  happens 
if: 

(IIa) NK lies in a  sector  not  greater  than  the  product 

(IIb) KH, lies in a sector  greater  than  the  product of 
of the  sectors of N and K. 

the  sectors of K and HI.  

If Requirements  (1Ia)-(IIb)  are  satisfied,  then i t  is 
advantageous  to  transfer K from a composition  with Hl 
into a composition  with N .  Requirement (IIa) usually 
means  that  the  multiplier K has a very  special  form, 
and  the difficulty  in  finding  suitable  multipliers is the 
main  problem in applying  this  method.  Once K is fixed, 
Requirement  (IIb) defines a (limited) class of operators 
H for  which  this  method  is  useful. 

As an  illustration of this  method, a condition  re- 
sembling  Popov’s is derived  next. 

3.3. A Slope-Restricted  Xondinearity and  an @t? Mzdi- 
plier 

Consider  the  feedback  system of Fig,  1,  under  the 
conditions of Corollary 2, but  with  an  added slope  re- 
striction on N, and a more  general  type of multiplier K. 

COROLLARY 3.* If: 
(I) N is an operator in %, incrementally  insideg 

{a ,  f i  1 where p> 0. 
(11) H is an  operator i f z  2, which  can be factored into 

a product H= KH1, where K is in at? and HI is 
in 2. 

(111) HI satisjies  the  circle cottditions for the  product 
sector {a ,  p 1 X ( K (  1, K ( O )  1 with ofse t  6 ,  
where 6 > 0. 

(IV) There islo a wz’ szuh that K(w2’) =w2. 
(V) Either K (  a) > O  or az=O. 

Then  E1 and E2 are  L2-bounded. 

tion  method,  with  the  help of Lemma 3. 
Corollary  3 is obtained  immediately by the  factoriza- 

REMARK: For  suitably  restricted N ,  Corollary 3 has 
several  advantages  over  Popov’s  method : 

(i) The  shift  an-ay  from  the  critical  region,  which  de- 
pends  on K&), can  be  controlled  more flexibly as a 
function of w.  This  is likely to be  useful  u-here a nega- 
tive  magnitude  slope d/dwl HCjw) I is followed by a 
positive  slope a t  a larger w.  

(ii) a2 need not  be zero if K (  x )  > 0. 
(iii) If a>O, the  critical region predicted  by  Corol- 

lary  3 (a disk)  is  sometimes  smaller  than  by  Popov’s 
method  (which  always  gives a half-plane  for a>O). 

E x u f P L E  3. Let N be  the  operator  in 51 whose graph 
is  shown  in  Fig. 9(a) (the  same as in  Example 2), and 
let H have  the  Laplace  transform 

F 1 S  + 
* {(s + r-?)(s + r’) (s + .)(s + .2) 1 

where r>>l. For  what  values of k is  the closed loop 
bounded?  Compare  Corollaries 1, 2, and 3. 

Figure 10(a) illustrates  the  significant  features of the 
Nyquist  diagram of H(jw)  (not  drawn  to  scale).  Ob- 
serve that  Hcjo) has  two  “pass  bands,”  one  for r-”w 
<r-l and  the  other  for r <w < r 2 ;  these  “pass  bands” 
produce  the  two  loops in Fig.  lO(a).  Note  that  the 
critical  region  is  the  same  half-plane  in a11 corollaries, 
namely,  Re { . ] 2 - 1 +6. 

were introduced by  the  author  in Reference [la!. A related  method  in 
8 Corollary 3 and  the  factorization  method, in a functional  setting, 

a Liapunov  setting  has  been  exploited by Brockett, IVillems, and 
F o r p  [4a]-[4b]. 

X (  x )  - X (  y ) 

x - y 5 B .  
i.e., or< 

lo This condition  is satisfied automatically if K( m)>O. If 
K( w ) = 0, then  it is satisfied if & is in Lz. 
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Corollary 1 predicts  boundedness for - 1 < k  < 8 
approximately. 

Popov’s  method  is useless here. A comparison of Figs. 
lO(a) and  10(b) show  the  effect of removing  the  multi- 
plier X/s+X: H’cjw) is moved  an-ay  from  the  critical 
region  in the lon-er left half-plane  (in  the  decaying  edge 
of the lower  pass  band, r-l <w < 1);  hou-ever,  this  im- 
provement  is  more  than offset by  the bulge  introduced 
in the  upper  left  half-plane (in the rising  edge of the 
upper  pass  band, 1 <w < r ) .  

What is obviously  needed  here is a  multiplier  that 
acts like  Popov’s  in  the lorn-er pass  band,  but  has no  ef- 
fect  in  the  upper  pass  band.  The at? multiplier K ( s )  
= ~-‘(s+l)(s+r-l) accomplishes just  this.  Its  removal 
shifts Hlcjw) entirely  into  the  right  half-plane  [Fig. 
lO(c)].  Corollary 3 therefore  implies that  the closed loop 
is  bounded for  all positive k, in fact, for k > - 1. 

6. COMMESTS AXD CONCLUSIOKS 

6.1. Circle  Conditions 
The  main  result  here is the Circle  Theorem.  The  Cir- 

cle Theorem  is  a sufficient condition  for closed-loop 
stability, which requires  the  nonlinearity N to lie  in- 
side  a  sector,  but  which  leaves N free  othern-ise. The  
other  conditions  are all  corollaries  of the Circle  Theo- 
rem. 

Corollary 1 is  probably  the  most useful result,  since 
i t  roughs  out  the region of stability,  with a minimum of 
restrictions  on  N.  Hou-ever, i t  is often  conservative. 

Corollaries 2 and 3 provide  a tradeoff  betn-een limita- 
tions  on N and  limitations  on H(jw). Probably  more sig- 
nificant than  the  actual  conditions is the  fact  that  there 
is a method  of  generating  them, namelL-, the  factoriza- 
tion  method. 

The  results derived in Part  I1 hold for nonzero  initial 
conditions in the  linear  element, pro\:ided the “zero- 
input  response” zuz satisfies the  indicated  restrictions. 

6.2. Extensions of the  Theory 

(see [lb]),  notably, 
The  theory  has been  extended in several  directions 

1) to L,, 
2) to  systems  with  a  limited  rate  of  time  variation. 

The  extension to  L, involves the use of exponential 
weighting  factors,  which  transform L ,  functions  into Lp 
functions.  The extension to  time-varying  systems  in- 
volves the use of a  shifted  Nyquist  diagram, H(u+jw) ,  
in x\-hich u depends  on  the  rate of time  variation. 

6.3. Gain and Phase Shift in Relation  to  6onlinear  Time- 
I‘arying Systems 

The  stability of a  linear  time-invariant  feedback sys- 
tem  depends  on  the  amounts of gain and  phase  shift 
introduced  by  the  open loop.  .Ire  similar considerations 
involved in nonlinear,  time-varying  problems? Of course 
the classical  definitions of pain  and  phase  shift,  in  terms 

of frequency  response,  have  no  strict  meaning  in  non- 
linear or time-varying  s?-stems.  However,  stability  does 
seem to  depend  on  certain  measures of signal  amplifica- 
tion  and  signal  shift.  Thus  the  norm  ratio ~ ~ H x ] ~ / ~ ~ x ~ ~  
plays a role  similar to  the role of gain.  Furthermore,  the 
inner  product (x, H x ) ,  a measure  of  input-output cross- 
correlation, is closely related  to  the  notion of phase  shift. 
For example, for linear  time-invariant  operators  in 5: 
the  condition of positivity, (x, Hx)>O, is  equivalent 
(by  Lemma 1) to  the  phase  condition, 

I t  may  be \vorth\vhile to  see what  the  theorems of 
Par t  I  mean  in  terms of gain  and  phase  shift.  This  can 
be  done n-ith the  help of Lemma 1. Theorem 1 of Par t  
I  can  be viexved as a  generalization  to  nonlinear  time- 
varying  systems of the  rule  that, “if the open-loop  gain 
is less than  one,  then  the closed  loop is stable.” Theorem 
3 can  be viewed as  the  generalization of, “if the  open- 
loop  absolute  phase  shift  is  less  than 180’ then1’ the 
closed loop is stable.”  Theorem 2 places  gain  and  phase 
shift in competition,  permitting  large  gains a t  small 
phase  shifts,  etc. 

6.4. Conclzrsions 
Some of the  salient  features of the  functional  theory 

are : 
(i) I t  provides  an  alternative  to  the  method of Lia- 

punov,  an  alternative  resembling  the classical Kyquist- 
Bode  theory. 

(ii) I t  is n-ell suited  to  input-output problems. 
(iii) I t  is  free of state-space  restrictions,  and  is  there- 

fore  useful  for distributed  systems,  h>-steritic  systems, 
etc. I t  also  lends itself well to  multivariable  systems. 

(iv) I t  unifies several  results in stability  theory.  In 
particular,  it is  noteviorthy  that  Popov’s  condition,  the 
slope-restricted-N  result,  etc.,  can  all  be  derived  from 
the Circle  Theorem. 

(v) I t  has led to  some new results,  notably  Corollary 
3 and  [lb]. 

The  theory  outlined  here  is  probably  still  far  from  its 
definitive  form.  Nevertheless, it  provides  enough  in- 
sight  to  make possible  a reasonably  srstematic  design 
of stabilizers. 

APPEX’DIX A 
DEFINITIONS OF CONICITY ASD POSITIVITY 

I t  will be  assumed  that H is a relation  in 6 i 0  and  that 
c, r>O,  and a l p  are  real  constants. 

GROUP I.  ‘(Increnzental”  Conditions 
H is  incrementally  interior  conic if 

I 
J ( H X  - H y ) t  - c(x - y ) t , l  5 rjl(r - y)rll; I 

tributes  an  absolute phase  shift of less than 90”; the open-loop ab- 
l1 There  are  two positive elements in the open  loop:  each  con- 

solute phase  shift is therefore less than 180O. 
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H is  incrementally  inside the  sector { a ,  /3 1 if The  limits in the  mean in (Bl)-(B2) exist,  and x1(7) 

( (Hz  - Hy) ,  - ,(x - y ) t ,  (Hx - H?)! - a(s - y) t ,  IO; 

((x - y)  t ,  ( H N  - H y ) t )  2 0; 

H is incrementally  positive if  

(where the  inequalities of Group I hold for all x and y 
in Do(H)  and all t 2 0 ) .  

The  definitions of an  operator  that is  “exterior”  conic 
or  “outside” a sector,  are  identical  to  the  preceding  ones 
except  for a reversal of the  inequality  sign,  and will 
therefore  be  omitted. 

REMARK: If H is  incrementally  inside { a ,  p) then H 
is inside {a ,  /3 1 .  Similarly,  each  inequality  in  Group  I 
implies  a  corresponding  inequality  in  Section 3. 

GROUP  I I .  “Instantaneous”  Conditions 
H is instantaneously  inside  the  sector { a ,  p ) if 

1~ 5 Hx( t ) / x ( t )  5 , p  (X E Lze;  t 2 0; x ( t j  # 0); 

H is  instantaneously  positive if 

x ( t ) .Hx( t )  2 0 (x E Lze; t 2 0). 

GROUP I I I .  (‘Instantaneous Incremental”  Conditions 
H is instantaneously  incrementally  inside  the  sector 

{ a ,  B )  if 
Hx(t)  - H y ( f )  

.I5 I P  
s(t) - y(t) 

(x E Lze; t 2 0 ;  s(t) - y ( t )  # 0).  

[Hx( f )  - H y ( t ) ] .  [ x ( t )  - y ( t ) ]  2 0 ( x  E L2,; t 2 0). 

H is instantaneously  incrementally  positive if 

REMARK: If H is  instantaneously  inside { a ,  O f ,  then 
R is  inside {a ,  /3}. Similarly,  each  inequality  in  Group 
I1 implies a corresponding  inequality in Section 3. Also 
each  inequality in Group I11 implies  a  corresponding  in- 
equality in Group 11. 

APPESDIX B 
LEMMA 1 

The  proof of Lemma  l(b) will be based  on  the  Prin- 
ciple of the  Argument, a theorem of Paley  and V i ‘ *  a lener, 
and  Parseval’s  theorem.  The proofs of Lemmas  l(a) 
and  l(c), being  straightforward  applications of Parse- 
Val’s theorem, will be  omitted. 

Some  preliminary  lemmas  and  properties will now  be 
introduced. 

DEFINITION: I f  x is a function in Lz then its L.I.M. 
TRANSFORM iS 

X ( s )  = 1.i.m. x( t )  exp (-sf)&. (0 2 0) (Bl)  
I;- * s,’ 

The  1.i.m. transform of X ( s )  i s  

x~(T) = - 1.i.m. X[ju) exp [ j u ~ ) d ~ .  (T real) (B2) 
1 

2ir F+.C 

=x(.).12 

R.l .  Properties of Transforms 

In  the following properties, H is an  operator  in C 
having a Laplace  transform H(s) .  

(-4) The  integral defining H(s)  [see ( 6 ) ]  converges 
and is bounded for u>uo, since 

Jo e h ( t )  exp ( - st)  d t  

5 Joz ! h(t) I exp (-uat)dt = const. 

(B) H(s )  is analJ7tic for U > U ~ . ’ ~  

(C) For u20, limlsl-m H(s )  =ha.’‘ 
(D) If x is  in Lz then Hx is in L2.15 
(E) If the 1.i.m. transforms of X E L Z  and H x € L z  are 

X ( s )  and Y ( s )  respectively,  then’j 

Y ( s )  = H ( s ) X ( s )  033)  

One  consequence of Property  D is that  every  map- 
ping of the  type defined by  the  right-hand  side of (2) 
is an operator’6  on Lze, and belongs to (510. 

3.2 .  Some Consequen.ces of :lTonenci-rclernent 
A contour  in  the  complex  plane will be  said to  have 

Property  N if it  does  not  pass  through  or  encircle  the 
origin. 

LEMMA 4. If the  Nyquist  diagram of H(s)  has  Prop- 
erty N then: (a) l/H(s) is analytic for u20. (b) If the 
inequality 1/1 H(u+jw) I <X holds  for u = 0 then  it 
holds  for all u 2 0. 

PROOF: (a)  Since H(s)  is analytic  for u>_O, i t  is 
enough  to  show  that H(s)  # O  for u >  0 to  prove  (a).  For 
this  purpose  several  contours  are  defined:  Let I?, denote 
the jw-axis (as  shown  in  Fig. 11) ; for R 2 0  a  constant, 
let rR denote  the clockwise contour  bounding  the  semi- 
circular  region I a+jw I 5 R where u >_ 0; let I’, --TR de- 
note  the difference contour;  and  let H(F,) and H(r, -J?d 
denote  images of the  respective  contours,  each  aug- 
mented  with  the  point h,. 

I t  will be  shown  that H(I’R) has  Property N for 
R2 Ro; since by  hypothesis H(s )  is  analytic  for u>O, 
and  has  no zeros  on the jw-axis, Lemma  4(a) follows by 
the  Principle of the  Argument. 

12 See IVidder [8], ch. 11, Theorem 10. 
13 Ibid., Theorem sa.  
14 The special case s=ju is  implied by  the Rieman-Lebesgue 

from  the special case and from  Properties A and B by a theorem of 
theorem  (Titchmarsh  [9a],  Theorem 1). The general  case folhvs 

Phragme‘n-Lindelof (Titchmarsh [9b], sec. 5.641. 
15 This follows from  Theorem 65 of Titchmarsh [9a], which implies 

that  the convolution of an LZ function with an LI  function is in Lz, 
and  has a transform of the  type (B3). 

16 Suppose that x is  in L2; rt is  certainly  in L?, and  H(rt) is in Lz 
by  Property D; since [H(rt)]t=[Hxlt,  it follorvs that [Hx]~ 1s in Lz; 
i.e., Hx  is  in Lzc. Thus H maps Lle into L?,; since H also  maps o into 
0,  i t  follows t ha t   H i s   an  operator on Lf. and in Ro. 
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Fig. 11. Contours. 

To prove  that H ( I ' E )  has  Property N observe that 

erty S by  hypothesis, it is  enough  now  to  show  that 
H(rR-I',) has  Property X. This  can  be  accomplished 
by  shon-ing  that H(I'R-J?,) lies  in a circle  centered a t  
h ,  and  not  including  the  origin.  The  last  assertion is a 
consequence of two facts. 

H(rR)  = H(r,) + H ( r R  4,) ; since H(r,) has  Prop- 

(i) There  is  an Ro>O for  which,  for R 2  Ro and s i n  

(ii) lz,#O. 
(rR-ru), I H ( ~ ) - I ~ , \  < + l h , ; .  

(i) is obtained  from  Property C of Appendix B. l  for 
I S I  >Ro, and  therefore  certainly  holds  for s in (rR-rS) .  
(ii) holds  since 

h, = lim H ( j w ) ,  
w- = 

and  since HCjw) # O  by  Property X. 
(b)  This  is a special  case of the  3Iaximum  3Iodulus 

Theorem of Phragm6n-Lindelof." The  theorem  implies 
that  a function  analytic  in a half-plane,  and  bounded 
on  the  boundary,  is  bounded  throughout  the  half-plane. 

B.3. A Paley-Wiener Lemma 

A complex-valued  function W ( s )  n-ill be  said  to 
satisfy  the  Paley-Wiener  conditions if 

(PW1) TTl(s) is analytic for u > 0, and 

(PIY2) I W ( U  + jw) Izdm 5 const. (U > 0). 

The following lemma  is a modification of Theorem 5 
of Pale)--IYiener [lo],  and  is  stated  without proof. 

LEMMA 5. (a) If w is in Lz, wl=O,  and W ( s )  is  the 
1.i.m. transform of w ( T ) ,  then W(s) exp ( s t )  satisfies the 
Palev-IYiener  conditions.  (b)  Conversely, if t>O and 
W(s) exp (s t )  satisfies  the  Paley-IViener  conditions, 
then  there  is a function w in Lz having  the  properties 
that  w t  = 0 and  that  V(s) is  the 1.i.m. transform of w .  

B.4. Proqf of Lemma l(b) 

-X 

Let x in LZe and t > O  be  given.  Since H is  linear,  it is 
enough  to  show t h a t   H i s  conic  with  parameters c and r ;  

l7 Titchmarsh [9b], sec. 5.61. 

that  is, 

~ I ( H ~  - c x ) t l l  2 r ! i X t i l .  (B4) 

For this  purpose,  let y 2  ( H x - c x )  and 6 H ( x J  
- [HxIt. Hence 

y t  = (HX - cx) t = H(&) - cxt - 6. (Bj) 

S o w  xt is  in Lp. Hence H ( x t )  is in Lz b~7  Property D of 
,Xppendix B.1. Since [H(X,)]~=(HX)~, i t  follows that  

is  in Lz. Thus 6 is  in La, all terms  in (B5) are  in 
Lz, and b57 Property E, 

Y ~ ( s )  = H ( s ) X t ( s )  - c X ~ ( S )  - A(s) (B6) 

where Y t ( s ) ,  X t ( s ) ,  and A(s) are  the 1.i.m.  transforms of 
y t ,  x*, and 6. Hence 

Now the  braced  terms  in (BY) are 1.i.m. transforms of 
functions  in L z ;  for X , ( s )  this  is  true  by  definition; for 
the  remaining  terms,  this  can  be  proved  by  the  reasoning 
given below in  Assertion 1. Suppose  that A(s) jH(s)  -c  
is  the 1.i.m. transform of a  function a(.); i t  follows that  

(Parseval's  Theorem) 

[by inequality (8) of Section 3.21 

- 1 I I  1 :  - - I , . , z  (Parseval's  Theorem) (€38) 
P 

I t  will be  shown,  in ,Assertion 1, that  q ( ~ )  = O  for  almost 
all 7 <f .  Therefore 

lint - qlj2 = il.+ + ! 1 ~ i I 2  2 II-~t112. 039) 

(B8) and (B9)  imply  (B4). 
-~SSERTION 1. The expression 4(s)/  [H(s )  -c ]  is  the 

1.i.m. transform of a  function q in L,: furthermore q(7) 
= O  for almost  all 7 < t .  

PROOF OF ASSERTIOS 1. By Lemma Sb, i t  is enough 
to show that [4(s) esp ( s t ) ] i [ H ( s )  - c ]  satisfies  the 
Pale>--Ii'iener  conditions. 

To prove  (PIVl),  observe  that  the following three 
terms  are  analytic for u>O: 4(s), because i t  is  the 1.i.m. 
transform of an Lp function;  exp ( s t ) ,  because i t  is  ana- 
lytic  throughout  the  plane; [ H ( s )  -c]-l, by  Lemma 4 
and  the  hypothesis  on  the  Kyquist  diagram.  The  prod- 
uct of these  terms  must  therefore also be  analytic  for 
u>o. 

To prove (PW2), observe that  
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- < const. (r > 0) [by inequality (S)] 

(Since 6EL? and 6, = 0 by  construction,  the  last  in- 
equality is implied by  Lemma  S(a).)  Q.E.D. 

APPENDIX  C 

LEMMA 2 

A preliminary  assertion will be  proved  first. 
ASSERTION 2. If N in X is positive, K is  in 2, and 

y = K x ,  then 

PROOF OF ASSERTION 2. 

s, z .  :Y(y(T))dT = 

Since K is in 2, y( t )  is  given bq; a  convolution  integral, 
whose  kernel is fixed for a fixed x, and whose limits of 
integration  are 0 and t ;  therefore y(0) = 0. Furthermore, 
since N is  positive, its  graph lies  in the  first  and  third 
quadrants. I t  follows that  the  right-hand side of (C2) 
is  non-negative.  Q.E.D. 

C . l .  Proof of Lemma 2 

Part a )  I t  is required  to  show  that, for an!, given x in 
LZe and  any  given t 2 0 ,  the  inequality 

[ ' X(.) * [ N K X ( T ) ] d T  2 0 (C3) 

holds. For  this  purpose,  make  the following substitutions: 
Write y f Kx, and  observe  that, since K ( s )  = k X / ( s + X ) ,  
y is differentiable  and 

(C3)  is  therefore  equivalent  to 

Now k and X are  positive  by  hypothesis;  the first  integral 
in (Cj )  is non-negative bq; Assertion 2 ; the second  inte- 
gral is non-negative,  since N is a positive operator; 
therefore (Cj) is true.  Q.E.D. 

Part b)  I t  will be assumed,  for  simplicity,  that p > O .  
CASE ,4. Suppose a: 2 0 .  I t  must  be  shown  that NK 

is inside (a:, p }  X { 0, k 1. This is equivalent  to  saying 
that  N K  is  inside { 0, KO 1 ,  or that  

( ( N K x ) ~ ) ,   ( N K x  - K B x ) ~ )  _< 0. ( C6) 

(C6) is  equivalent  to  the  inequality 

@(at, (NY)~) L I I ( N Y ) ~ ~ ~ ~  (C7) 

where y = Kx. Now recalling that  ( x t ,  ( N y )  t )  equals  the 
left-hand  side of (Cj) ,  we get 

k$(xt ,  (NY)~) 2 B f ' Y ( T )  .L j ' (y (T) )dT.  

Observing that,  for a z o ,  ;V satisfies the  inequality 
BY(.) . N ( ~ ( T ) )  2 [ N ( J ~ T ) ) ] ~ ,  we get 

0 

@(xt ,  ( N y ) t )  2 [-l-(y(T))]2dT, 
0 

which  implies (C7). Q.E.D. 
CASE B.  Suppose a<O. Decompose i3r(x) into  two 

parts, iV(x) = N+(r) +;V-(x) ; let X+(.:) = for N ( x )  
> O  and A7+(x) = O  elsewhere, and  let AT-(.:) be  similarly 
defined. 

Since N+ is  clearly  inside { 0, p { , Case A implies that  
N+K is inside { 0, kp 1. Similarly N - K  is inside { k a ,  0 1. 
On  summing  the  sectors of N+K and N - K  (by  the  Sum 
Rule of Par t   I )   i t  is found  that N K  is  inside { Ka, kp)  ; 
that  is, inside {a ,  p }  x { O ,  k}. Q.E.D. 

APPENDIS D 
LEMMA 3 

Before  proving  Lemma 3, a few related  assertions 
will be  introduced. 

ASSERTIOS 3. Let K be  an  operator in @e, x a fixed 
element of Lz,, and y Kx. Then x has a "Foster  expan- 
sion"  in y;18 that  is, x can  be  expressed as a finite sum, 

m 

X = Fiy, 
i=O 

in  which F, are  operators  mapping  the  image  under K of 
into R[O,  a), as follows: 

CASE 1. FoY = K-'(O) * JJ. 

CASE 2. If i =  1, 2, . . . , (m-I), then Fi  is in 6: and 
has a  Laplace  Transform, 

Fi(3) = h i S / ( S  + Oz),  (I& > 0, 0i > 0). 

CASE 3. Frny = h.mj if K (  a) = 0 and F,y = 0 otherwise, 

ASSERTION 4. If N is  incrementally  positive,  and 

PROOF OF L~SSERTIOX 4. I t  is  enough to show  that 

where h, > 0. 

(st,  [ N y ] J > O  then ( . x t ,  [N( .x+y)]J>O.  

( X t ,  [N(x  + y ) t ] !  - ( x t ,  [ N Y ] ~ )  2 0 (Dl)  

But  the  left-hand  side of (Dl )  can  be  expressed as 

((x + y)f - y t ,  [N(X + y ) ] t  - ( N y ) J  

which has  the  form ( x I 1 - x Z t ,  N X ~ , - N . : ~ ~ ) ,  and is  non- 
negative,  since N is an  incrementally  positive  operator. 
Therefore ( D l )  holds.  Q.E.D. 

l8 See Guillemin [2], p. 115. 



476 IEEE TRANSACTIONS ON 

ASSERTION 5 .  If N is an  operator  in 31, incrementally 
inside  a  sector {a, a )  where a < O  and p>O,  then N can 
be  decomposed  into N =  N++N-,  where N- is inside 
{a, O } ,  and N+ is  inside { 0, p 1. 

PROOF OF ASSERTIOX 5. Since N is  incrementally  in- 
side a sector,  its  graph N is  continuous  and  has  bounded 
variation  on  every  finite  interval.  Consequently N can 
be  expressed as an  integral, ;V(x) =joZn(x’)dx‘. Let 
n+(x) = n ( x )  if n(x)kO, and n+(x)  = O  if n(x)  < O ;  let 
X+(.) =jOZn+(x‘)dx’. Clearly N+ has  the  desired  prop- 
erty. N -  is  constructed  similarly.  Q.E.D. 

D.1. Proof of Lemma 3 

given  point in [0, a); i t  is required  to  shou-  that 
Part Q) Let x be any  given  element of L??, and t an)- 

( X t ,  (NKn-)t) 2 0. (D2) 

Letting y 2  K x ,  and recalling that  x can  be  expressed 
by  the  Foster expansion 

m 

n: = Fiy 
i=O 

(see  Assertion 3), (D2) is  equivalent  to 

m 

( (Fiy) t ,  (Ny) t !  2 0. (D3) 
i = O  

I t  xi11 be  shown that each  component  on  the  left-hand 
side of (D3)  is  non-negative. 

CASE 1. Here Foy =K-l(O) ’y. Hence ( (Foy ) t ,  ( N J I ) ~ )  
= [K-’(O)] ( y t ,  ( N y ) f ) ;  this  is  non-negative  since N is 
a positive  operator,  and  since K ( 0 )  is necessaril>- posi- 
tive. 

CASE 2. Here Fi(s)  =kis,:’(s+Bz). Let 

z(t)  = 12i-1 Fiy(r)dT. s,’ 
I t  follows that y=i+O,e almost  everywhere,  and  that 
Fiy = almost  everywhere.  Hence 

( (F;y )* ,  ( N y ) f )  = h i ( i t ,  [ N ( t  + (D1) 

Son-, observing that B i > O ,  &Assertion 2 implies that  
(i, [N(Biz)],) is non-negative.  Observing that  Izi is posi- 
tive,  the  right-hand  side of (D4) is non-negative  by 
Assertion 4. Thus Case 2 is proved. 

CASE 3. Here F,,,y=h,,,? if K (  x )  = O .  Hence ((F,Y)~, 
( N y )  t )  = h,bt, ( N y )  t ) .  Case 3 follows by .Assertion 2. 

Since  the  inner  product is non-negative in all three 
cases,  (D3)  holds.  Q.E.D. 

Part b )  .4ssume, for simplicity. that  B > O .  
CASE -A. If a=O then,  by  reasoning  similar  to  that 

used in Lemma Z(b), (Cj)-(C7), the follo\t-ing inequal- 
ity is obtained: 

(xt, (NKs),) 2 [ B K ( o ) ] - ~ ~ /  2. 

AUTOMATIC  CONTROL 

Hence NK is inside (0,  PK(0) 1, which  equals { O ,  6 )  

CASE B. If  a>O then N K  is  decomposed  into  three 
x ( 0, K ( 0 )  } .  

parts 

N K  = [ [ N  - d]K} + { a[K - K ( = )  .I]} 
+ ( a S ( + I } .  (D5) 

Son- the  three  parts lie in  the  sectors (0, (P-a)K(O)} , 
{ O ,  ~ [ K ( O ) - K ( Q J ) ] ~ ,  and { a K ( = ) ,  dl(=)), respec- 
tively.  (The  first  two of these  sectors  are  determined b17 
the  rule  formed  in  Case A, after  observing  that [N-al l  
is inside { 0, p - a }  , and  that  [K--K( m )  -11 is  inside 
(0,  [K(O) -K( a)] ] ; the  third  sector  is  simply  the  sec- 
tor of a  constant  times  the  identity.)  On  summing  the 
three  sectors  (by  the  Sum  Rule of Part   I ) ,   i t  is  found 
that NK is inside {aK(  e), PK(0) ] ; that  is,  inside 

CASE  C. If a <0, N is decomposed  into N+ and N-, as 
in Assertion 5. This case  then follows by  the  reasoning 
used in Case B of Lemma 2. Q.E.D. 

!a7 0) x { m 4 ,  K(O)t .  
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