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On the Input-Output Stability of Time-Varying
Nonlinear Feedback Systems—Part II: Conditions
Involving Circles in the Frequency Plane
and Sector Nonlinearities

G. ZAMES, MEMBER, IEEE

Abstract—The object of this paper is to outline a stability theory
based on functional methods. Part I of the paper was devoted to a
general feedback configuration. Part II is devoted to a feedback
system consisting of two elements, one of which is linear time-in-
variant, and the other nonlinear.

An attempt is made to unify several stability conditions, including
Popov’s condition, into a single principle. This principle is based on
the concepts of conicity and positivity, and provides a link with the
notions of gain and phase shift of the linear theory.

Part II draws on the (generalized) notion of a ‘‘sector non-
linearity.” A nonlinearity N is said to be INSIDE THE SECTOR {«, 8] if it
satisfies an inequality of the type {(Nx—ax), (Nx—3x);}<0. If N
is memoryless and is characterized by a graph in the plane, then
this simply means that the graph lies inside a sector of the plane.
However, the preceding definition extends the concept to include
nonlinearities with memory.

There are two main results. The first result, the CIRCLE THEOREM,
asserts in part that: If the nonlinearity is inside a sector {«, ,8}, and
if the frequency response of the linear element avoids a “critical
region” in the complex plane, then the closed loop is bounded; if
«>0 then the critical region is a disk whose center is halfway be-
tween the points —1/« and —1/8, and whose diameter is greater
than the distance between these points.

The second result is a method for taking into account the detailed
properties of the nonlinearity to get improved stability conditions.
This method involves the removal of a ‘‘multiplier’”” from the linear
element. The frequency response of the linear element is modified
by the removal, and, in effect, the size of the critical region is re-
duced. Several conditions, including Popov’s condition, are derived
by this method, under various restrictions on the nonlinearity N; the
following cases are treated:

(i) Nisinstantaneously inside a sector {a, 8}.
(ii) N satisfies (i) and is memoryless and time-invariant.
(iii) N satisfies (ii) and has a restricted slope.

1. INTRODUCTION
T HE feedback system of Fig. 1 consists! of a linear

time-invariant element H and a (not necessarily
linear or time-invariant) element N. It will be
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* A single input x, multiplied by real constants a: and as, is added
in at fwo points. By cettmg a1 or as to zero, it is possible to obtain a
single-input system, in which the element closest to the input is
either the linear element or the nonlinearity. The terms %, and w» are
fixed bias functions, which will be used to account for the effects of
initial conditions. The variables ¢; and ¢; are outputs.
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Fig. 2, If Nx(¢) vs. 2(¢) and H(jo) lie in the shaded regions, and if

the Nyquist diagram of H(jw) does not encircle the critical disk,
then the closed loop is bounded.

supposed, for the moment, that N has no memory.
These assumptions are among, the simplest which en-
sure that the system is both

(i) general enough to have many applications

(ii) complicated enough to exhibit such character-
istic nonlinear phenomena as jump resonances,
subharmonics, etc.

The object here is to find stability conditions for the
closed-loop system. For practical reasons, it is desirable
to express these conditions in terms of quantities that
can be measured experimentally, such as frequency re-
sponses, transfer characteristics, etc. In particular, the
following question is of interest: Imagine that the graph
of N lies inside a sector of the plane, as shown in Fig.
2(a), and that the frequency response of H is plotted
in the complex plane; can the complex plane be divided
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into regions that are “safe” or “unsafe” as far as stabil-
ity is concerned?

It will be shown that, with certain qualifications, such
a division is possible. In fact it has already been shown
in Part I that such regions, called “conic sectors,” exist
in a quite general sense. Here these general results will be
applied to some concrete situations, involving frequency
responses, etc. (Fig. 2, which illustrates the simplest
of the results to be obtained here, gives some idea of
what is being sought.)

2. STATEMENT OF THE PROBLEM

The purpose of this section is to define H and N, and
to write feedback equations. H and N will be repre-
sented by input-output relations or by operators, in
keeping with the theory outlined in Part L.

DEFINITION: R[0, «) is the space of real-valued func-
tions on the interval [0, o).

L,, where p=1,2, - - -, is the space consisting of those
x in R[0, ) for which the integral [¢!x(t)|7dt is finite.
In addition, for the case p=2, it is assumed that L, is an
inner-product space, with tnner-product

(x, 3) = f ()y()dr

and norm ||x\ly. The symbol |||, without subscript, will
often be used instead of ||x||-

Lo 15 the space comsisting of those fumctions x in
R0, «) that are measurable and essentially bounded. L,
1s assumed to be a normed linear space, with norm

el = esssup [ 200}
>0

No distinction will be made between functions differing
over sels of zero measure.

Those definitions which were introduced in Part 1
will only be summarized here. Following the convention
of Part I, the subscripted symbol x; denotes a function
in R[0, ») truncated after [0, ). The space L., where
p=1,2, -, =, is the extension of L, i.e.,

Lp. = {x! x € R[0, @) and », € L, for all ¢ > 0}.

An extended norm ||x|,. is defined on Ly, where |'x| 5.
=|ixl|, if *€L, and ||#||e= o if x&EL,. The symbol
|||z will usually be abbreviated to |x![..

The concept of a relation H on L,., with domain
Do(H) and range Ra(H) was introduced in Part I. A
relation H on L, is Ly-bounded if H maps bounded sub-
sets of L, into bounded subsets of L,.. H is L,-continu-
ous if, given any x in Do(H) and any A>0, there is a
>0 such that, for any v in Do(H), if ||x — || 5. <8 then
| Ex — Hy|l e <A

Part 11 will be devoted entirely to finding L; condi-
tions (for boundedness and continuity), since these are
easier to derive than the other L, conditions. However,
most of the results of this paper have been extended to
the L, norm, in [1b]. It has been found that, in most
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cases, the L, conditions imply L.-boundedness or con-
tinuity. For physical applications the most appropriate
definitions of boundedness and continuity are, of course,
obtained in the L. norm.

DEFINITION: Let R be the class of relations on Ls, hav-
ing the properiy that the zero element, denoted o, 1s in
Do(H), and Ho=o0. An operator H on L. is any function
of the type H: Ly,—Ls..

DEFINITION: AR operator H on Lo, 15 TIME-INVARIANT
if it commutes with all delays. That is, for t >0 let T, be
the operator on Ls, given by: T.x() =x(i—7) for t>71,
and T.x(t) =0 for t<7. Then HT,=T.H for all 7>0.

H is MEMORYLESS ¢f Hx() is a function of x(f) (i.e.,
only of x(1)) for all x in Ly, and for all t > 0.

2.1. The Operator Classes N and £

DEFINITION: 9T is the class of operators on L. having
the following property: If N is in N then there s a function,
N: Reals—Reals, satisfying?

Nx(®) = N@(®)) (v € Lot > 0) (1)

and having the following properiies: (1) N(0)=0, (1)
| N(x)| Lconst. | x|, and (i) for any real %, [eN(x')dx'
s finite.

An operator in 9 is memoryless, time-invariant, not
necessarily linear, and can be characterized by a graph
in the plane. The letter ;¥ will indicate the graph of N.

DEeFINITION. £ 75 the class of those operators H on La.
satisfying an equation of the iype?

Hx() = hoa(l) +fth(t ~7na(mdr (3 € Lyt 2 0) (2)

in which he is a real consiant, and the impulse response h
is a function in L, with the property that, for some oy <0,
h(t) exp (—aot) is also in L.

Operators in £ are linear and time-invariant.

2.2. Feedback Equations

Consider the feedback system of Fig. 1, but with two
modifications: (i) N is not necessarily memoryless;
(ii) a1 and a, are operators on Ls., multiplying x. (This
amount of generality will be needed for some of the
intermediate results; ultimately, the interesting case is
that in which IV has #o memory, and a; and a, are real
constants.) The equations of this system are

€1 = a1x + W — Ney
€y = QX —I— wWe -|— H61

in which it is assumed that:

(3a)
(3b)

H is an operator in £
N is a relation in R

2 [t can be verified that every mapping of the type N:L:—R[0, »)
satisfying (1) is in fact an operator on Ls,.. Similarly, every mapping
H:L..—R[0, %) satisfying (2) is an operator on L, [see (B1) of
Appendix BJ.
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x i1 Ly, 15 an input

e, and ey in Ly, are outputs

wh and we 1n Ls are fixed biases

either a1 and as are real constants, or, more generally?
a1 4s a relation on Lo having the property that
”alx”eSconst. Hx”e, and similarly for as.

REMARK: If, to begin with, the linear element satis-
fies a state equation, then He is set equal to the “zero-
initial-condition response” of the state equation, and
s, 18 set equal to the “zero-input response.”

The closed-loop relations which map x into ¢, and e;
will be denoted E; and E;. The objective here is: Find
conditions on N and H which ensure that Ey and E; are
Lo-bounded and Ly-continuous.

3. ConpIitioNs FOR CONICITY AND POSITIVITY

This section has some preliminary results, which will
be needed later in the analysis of stability. The follow-
ing questions are fundamental to this analysis. Under
what conditions is an operator conic or positive? Under
what conditions is the composition product of two oper-
ators conic or positive?

The definitions of conicity and positivity were intro-
duced in Part I. They are repeated here, for the special
case of relations on La,.

DEeFINITION: Let H be a relation in Ro. H is INTERIOR
CONIC %f ¢ and r >0 are real constants and the inequality

”(Hx), — cx,”Ser,_!l & Do(H);t 20 (4)

holds. H is exterior conic if (&) holds with the inequality
sign reversed. ¢ will be called the center parameter of H,
and r will be called the radius parameter of H.

H is INSIDE (OUTSIDE) THE SECTOR {a, 8} if a < and
if the inequality

{(Hx — ax):, (Hx — Bx);) 0 (x & Do(H);t > 0) (5)

holds (with the inequality sign reversed).

H is POSITIVE if it satisfies the inequality (x,, (Hx):)
>0 for all x in Do(H) and all t>0.

In Part I, the concepts of conicity and positivity were
subdivided into categories such as “instantaneous”
conicity, “incremental” conicity, etc. The definitions of
these terms are listed in Appendix A.

RemAark: The following conditions are equivalent:
(1) H is interior conic with parameters ¢ and r. (ii) H
is inside {c—~7, c+7}.

3.1. Memoryless, Time-Invariant Nounlinearities

Consider the operator class 97; the conditions for N
in 9 to be conic, positive, etc., are simply the “instan-
taneous” conditions of Appendix A. Some of these con-
ditions are illustrated in Fig. 3. In particular, N is inside
the sector {a, 6} if its graph lies in a sector of the plane
bounded by lines of slopes « and 8; N is incrementally

3 The more general assumption will be needed in Section 5 only.
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(@) N i5 INSTANTANEOUSLY
INSIDE A SECTOR {d,B}

(b) N IS POSITIVE

/
Nx@®)  /p Nx(t)
AN |
NS \\
A\ \\\\\\\ \ \
\ NN o
N\
x(t) ~
N\ AN

Fig. 3. Permissible regions (shaded) for instantaneously confined

nonlinearities.
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Fig. 4. Permissible regions (shaded) for the frequency
response H(jw).

inside {a, 6} if, 1n addition, N satisfies the slope restric-
tions a< [N(x) —N(¥)]/(x—y) <B. N is positive if its
graph lies in fhe first and third quadrants; IV is incre-
mentally positive if, in addilion, N is nondecreasing.

3.2. Linear Time-Invariant Operators

Consider the operator class £; it will be shown,
roughly speaking, that a conic sector has a counterpart
in the frequency plane, in the form of a circular disk
(see Fig. 4). This disk degenerates into a half-plane in
the case of a positive operator.

DEFINITION: Let s =0+ jw denote a point in the complex
plane. The LAPLACE TRANSFORM H(s) of H in £ is

H(s) = h, + f =clz(t) exp (—st)dt (¢ >0) (6)

0

(The integral on the right-hand side of (6) exists and is
analytic for >0 [See (B1) of Appendix B].)
DEFINITION: The NYQUIST DIAGRAM of H(s) is a
curve 1n the complex plane consisiing of . (1) the image of the
Jjw-axis under the mapping H(s), and (ii) the point k.
LEMMA 1. Let H be an operator in £, and let c and v >0
be real constants.

(a) If H(s) satisfies the inequality

| H(jw) —¢| <7 (0w € (—»,»))

M

then H is incrementally inferior conic with center param-
eter ¢ and radius parameter r.
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(b) If H(s) satisfies the inequality

| HGjw) —c| 27 (0 € (=0 @)

®)

and if the Nyquist diagram of H(s) does not encircle
the point (¢, 0), then H 1is incrementally exterior
conic with center parameter ¢ and radius param-
elerr.

If Re{H(w)} >0 for wE(— »,) then H is

incrementally positive.

(©)

The Proof of Lemma 1 is in Appendix B.

REMARK. The gains g(H) and g(H) were defined in
Part I. It follows from Lemma 1(a) that if EH(]w)I <e,
then g(H)=g(H) <c.

3.3. Composition Products and Sector Products

The composition product of two positive operators
need not be positive. Those special cases in which the
product is positive are of interest because they give a
tighter bound on the composite behavior than would be
obtained in general. (They form the basis of the factor-
ization method of Section 5.2.)

Similarly, those special cases in which the product of
two sector operators lies inside the “product sector” are
of interest.

DEFINITION: The PRODUCT SECTOR {au, B} X {az, B2}
is the sector {a, 6}, where |o, B] is the interval of the
reals defined by o, 8] = {xy|xE [o, B1] and yE [as, B:]} -

In other words, product sectors behave like point-
wise products of the corresponding real intervals (see
Fig. 5).

It is easy to show that if both operators are memory-
less, say if both operators are in 9, then their product
has the above mentioned properties. [This can be shown
by expressing the ratio Ni(Na(x))/x as the product
(N1()/9) X (Ns(x)/x), where y2 Ny(x).] More difficult
are cases in which one operator is in 9 and the other is
in £, as in Lemmas 2 and 3.

3.4. A AMemoryless
Multiplier

Nonlinearity and a First-Order

The following lemma is the basis for Popov’s condi-
tion (Section 5.1).

LEMMA 2. Let N be an operator in 9, K be an operalor
in £, and let the Laplace transform of K be K(s) =kN/s-+X
where k>0 and A >0.

(a) If N is positive* then NK is posttive.

(b) If N is inside’ a sector {a, B} then NK is inside

the product sector {a, B} X {0, k}.

The proof of Lemma 2 is in Appendix C. (Note that K
itself is positive and inside {0, k}, since K(jw) lies
entirely in the right-half plane and since !K(jw)—%kl
=1k.)

2

tie., xN(x)>0.
Sie., a<N(x)/x<L8.
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Fig. 6.

3.5. A Memoryless Nonlinearity and an ®C Multiplier

A situation resembling Lemma 2, but with N more
restricted and K more general, is considered next. K is
taken to be a sum of first-order terms, of a type that
can be realized as the driving-point impedance of an
RC network (see Guillemin [2], ch. 4).

DEFINITION: Let RC be the class of those operators K
in £ having Laplace transforms of the form
kil k,?\;

K& zz=:1 s+ As
where ;> 0, \; >0, and K(«) >0 are real constants.

An operator K in ®€ has poles and zeros alternating
on the negative-real axis, with a pole nearest but not at
the origin. The frequency response of K lies inside a
circle in the right-half plane, located as shown in Fig.
6(b); it follows that K is positive and inside the sector
{E(=), K(0)}. (Observe that

+ K() 9

K(@0) = K(=) 4+ 2 ki > K().)
=1
LeymMA 3. Let N be an operaior in 9, and K be an
operator in RC.

(@) If N is incrementally positive then NK is positive.

(b) If N is incrementally inside the sector {a, B} then
NK is inside the product sector {a, B} X { K (o),
K(0)}.

In other words, multiplication by K affects the com-
posite sector as if K had no memory. The proof of
Lemma 3 is in Appendix D.
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4. CircLE CONDITIONS FOR STABILITY

Consider now the main problem of this paper, namely,
the problem of stability for the loop of Fig. 1. Suppose
that IV is a relation (which may or may not be memory-
less) inside a sector {a, 8}. What conditions on the
frequency response H( jw) are sufficient to ensure bound-
edness of the closed loop? It will appear that the follow-
ing “circle conditions” are sufficient:

DerINITION: H(jw) will be said io SATISFY THE CIRCLE
CONDITIONS FOR THE SECTOR {e, 8}, WITH OFFSET &,
where « <8, 3>0, and 6 >0 are real constants, if the fol-
lowing conditions hold:

CASE 1A. If a>0, then

oo+ 13+ (- 2) o

(@€ (==,%)) (10)

and the Nyquist diagram of H(jw) does not encircle the
point —3(1/a+1/8).
CaskE 1B. If a <0, then

o2+ 2) <32 -)-
(0 € (==, ©)).

Cask 2. If a=0, then Re{H(jw)}>
wE(— <, oc)-

In other words, the complex plane is divided into two
regions, shaped either like a circular disk and its comple-
ment, or like two half-planes. (The case a>0 is illus-
trated in Fig. 2.) One of the regions will be called
“permissible” and the other will be called “critical.” If
H(jw) does not enter or encircle the critical region, then
the closed loop is bounded. If, in addition, N is incre-
mentally inside {a, B}, then the closed loop is continu-
ous. These results are formalized in the following theo-
rem:

(11)
—(1/B)+38 for

A CirCcLE THEOREM. Suppose that

(I) N is a relation in ®o, (incrementally) inside the
sector {a—I—A, B—A} , where 3>0.
(I1) H is an operator in L, which satisfies the circle
conditions for the sector {e, B} with offset 6.
(I1T) & and A are non-negative constants, at least one of
which is grealer than zero.

Then the closed-loop operators Ey and E, are Ly-bounded
(Le-continuous).

The Circle Theorem is based on Theorem 2 of Part I.
It was assumed in Theorem 2 that a, and a; were real
constants. However, with only minor changes in the
proof, it can be shown that Theorem 2 holds more gen-
erally if @¢; and a; are relations on L, provided M and Qs
satisfy inequalities of the type “aw e The
Circle Theorem then follows 1mmed1ate1y w 1th the aid
of Lemma 1 of Part II.
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Critical disks for Example 1. (Broken curve indicates edges
of jump region in H{jw) plane.)

p——Re

CONTINUITY DISK
FOR (b)

—BOUNDEDNESS DISK
FOR (a) AND (b).

Fig. 7.

The Circle Theorem can be viewed as a generaliza-
tion of Nyquist's criterion,® in which a critical region
replaces the critical point. For a given N there are two
critical regions, one for boundedness and one for con-
tinuity. It can be shown that the continuity region al-
ways contains the boundedness region (see Example 1
and Fig. 7).

The Circle Theorem will serve as the generating theo-
rem for the rest of this paper; i.e., the remaining results
will be obtained as corollaries to the Circle Theorem by
variously constraining the form of N. In particular, the
following corollary is obvious.

4.1. A Circle Condition for Instantaneous Nonlinearities

CoroLLARY 1. If (I) N in ®R, is instantaneously (incre-
mentally) inside the sector {a—i—A, 6—A} where 3> 0, and
if conditions (11) and (I11) of the Circle Theorem hold,
then Ey and E; are La-bounded (Ly-continuous).

Exavpie 1. (a) Let Ny be the relation shown in Fig.
7(a), and N be the relation in ®, defined by the equation
Nx(t) =[1+sin? (¢)]- No(x(£)). Find the critical regions
for boundedness and continuity. (b) Repeat for the
function shown in Fig. 7(b).

(a) Observe that ¥, is inside the sector {1/3, 1} and
that the time-varying gain [1+4sin? ()] is inside the
sector {1, 2}. It follows that N is inside the product
sector, {1/3, 1} x {1, 2} ={1/3, 2}. Corollary 1 there-
fore implies that the critical region for boundedness is a
disk, as shown in Fig. 7. However, since N is multi-
valued, and therefore not incrementally in any sector,
Corollary 1 provides no information about continuity.

(b) The same results as in (a) are obtained for bound-
edness. In addition, N is incrementally inside {1/6, 4},
and a continuity disk is obtained, as shown in Fig. 7.

8 More accurately, of the sufficient part of Nyquist’s criterion.

7 Similar or closely related circle conditions were found inde-
pendently by the author [1a], Sandberg [5], Narendra and Goldwyn
[6], and Kudrewicz [7].
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Observe that the nonlinearity N in Corollary 1 can
be time-varying and ¢an have memory. In fact, very
little has been assumed about the detailed character of
N. The price paid for this is that Corollary 1 is often
conservative, i.e., the critical region is too large. This is
especially true of the boundedness condition (see Exam-
ple 2). The continuity condition probably gives a quite
fair estimate of what to expect. In fact, an approximate
analysis, based on the harmonic balance method (cf.
Hatanaka [3]), suggests that continuity breaks down in
the following way: There is a zone, inside the critical
continuity disk, in which jump-resonance phenomena
occur. The zone is not much smaller than the continuity
disk. Furthermore, the magnitudes of jump resonances
depend on the Nyquist diagram behavior inside the
continuity disk.

5. ConDITIONS WITH TRANSFERRED MULTIPLIERS

The next two corollaries can be viewed as attempts to
reduce the size of the critical region, at the cost of added
restrictions on N. In certain cases, it will be possible to
remove a “multiplier” K from the linear element, be-
fore applyving the Circle Theorem. The removal of K
will shift the frequency response of the remainder,
H,(jw), away from the critical region. Thus the effective
size of the critical region will be reduced.

5.1. Popov’'s Condition

Consider the feedback system of Fig. 1, under the
same conditions as in Corollary 1, but with the added
constraint that IV is a memoryless, time-invariant oper-
ator. The following condition for boundedness (not con-
tinuity) involves the removal of a first-order multiplier
from H.

COROLLARY 2. If

(I) N is an operator in I, iuside the sector {a, 8}
where 3> 0.

H is an operator in £ that can be factored into a
product H=KH,, where H,and K are in £, and
K(s)=N/(s+N) where A\>0.

H, satisfies the circle conditions for the product
sector {a, ﬁ} X {0, 1} with offset 8, where §>0.
a»=0 and 2 is in Ls, where iy denotes the deriva-
tive on [0, =),

Then E, and Es are Ly-bounded.

(1D

(I1D

(Iv)

ReMARKS: (i) For a>0, Condition III simply means
that Re{(jo4+-NH(w)} > —\/8+8. (ii) Condition IV
limits the result to that configuration in which the direc-
tions of flow is from the input to H to N.

Proor oF CoroLLARY 2. The feedback equations will
be transformed, as illustrated in Fig. 8; i.e., H will be
split into a product, H=KH,, and the multiplier K will
be transferred into a composition with N. It will then
be shown, in Step 1, that the transformed equations are
bounded, and, in Step 2, that they are equivalent to the
original equations as far as stability is concerned.
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A transformation.

Fig. 8.

Letting ws’ = w2+ A"laws, and recalling that ¢, =0, con-
sider the equations of the transformed system of Fig. 8,

el’ = Wy + ayx — NK€2’ (lza)
e’ = wy + Hyey (12b)

Let E, and E,’ be the closed-loop relations for (12a)-
(12b).

StEP 1. E\' and E,’ are L;-bounded. This follows from
the Circle Theorem whose hypotheses are satisfied be-
cause: w;’ is in Le by assumption IV; NK is in the prod-
uct sector {a, 6} X {0, 1} by Lemma 2; and NK satis-
fies the appropriate circle conditions.

STEP 2. It will be shown (below) that

E1 = Ell (133)
Eg = KEzI (13b)

Since E;’ and E;’ have been proved L,-bounded, and
since K is certainly Ls,-bounded, it follows that E; and
E, are Ls-bounded.

To prove (13b), recall that E, and E, are subsets (of
a product space), so that it is enough to establish that
each contains the other. Suppose that (x, e,) is an ele-
ment of E,; by definition of E,, there is an ¢; in Lo, satis-
fying (3a)-(3b); let e’ =¢; and e’ =w,’+ Hier. Direct
substitution shows that (x, &, e;’) satisfies (12a)-(12b),
so that (x, &) belongs to Ey’. Substitution also shows
that e; = Ke,', so that (x, e) is in KE>'. Since (x, ¢) is an
arbitrary element of E,, it follows that KE, contains
E,. It can similarly be shown that E; contains KEy', so
that (13b) holds. The proof of (13a) is similar. Q.E.D.

ExAvpPLE 2. Let N be the operator in 91 whose graph
is shown in Fig. 9(a), and let H(s) =k/(s+N)(s+p). For
what values of k is the closed-loop Ls-bounded? Com-
pare Corollaries 1 and 2.

Here N is inside {0, 1}, so the critical region is a half-
plane, Re{ . } < —1+44, in both corollaries. In Corollary
2 let K(s) =N/(s4+\) and Hi(s) =k/N(s+u); the follow-

ing estimates are obtained:

Corollary 1: —Au<k<A+u)(A+u+220)
Corollary 2: —Au<k

Corollary 2 is less conservative than Corollary 1, as it
shows the closed loop to be bounded for all positive k.

Figure 10 also illustrates the following point: For
a <0, both corollaries predict the same critical region;
however, in many cases of interest, H,(jw) is further
from the critical region than H(jw).
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Fig. 9. An example of Popov's Condition. Arrows indicate shift

away from critical region.
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Fig. 10. Nyquist diagrams for Corollaries 1-3.

5.2. The Factorization Method

The proof of Corollary 2 suggests a method for gen-
erating a class of Popov-like conditions. The method
consists of a factorization of H into H= KH,, followed
by the transformation of (3a)-(3b) into (12a)-(12b)
followed by an application of the Circle Theorem. Vari-
ous stability conditions are produced by variously
choosing the multiplier K.

The method has two preconditions:

(Ia) Either K—! exists or g;=0.
(Ib) There is a wy’ in L, such that K(w,') = w,.

These preconditions ensure that (3) are transformable
into (12). Note that if K= exists, then as need not be
zero; however, in that case, (12b) must be modified by
the addition of a term ay'x where ay’x = K~ la.x (that is,
as’ is a relation on L,).

The method is worthwhile only if it gives a smaller
effective critical region than Corollary 1. This happens
if:

(ITa) NK lies in a sector not greater than the product

of the sectors of N and K.

(IIb) KH, lies in a sector greater than the product of

the sectors of K and Hi.

If Requirements (Ila)-(IIb) are satisfied, then it is
advantageous to transfer K from a composition with H;
into a composition with N. Requirement (I1a) usually
means that the multiplier K has a very special form,
and the difficulty in finding suitable multipliers is the
main problem in applying this method. Once K is fixed,
Requirement (IIb) defines a (limited) class of operators
H for which this method is useful.

As an illustration of this method, a condition re-
sembling Popov’s is derived next.
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5.3. A Slope-Restricted Nonlinearity and an ®RC Multi-
plier
Consider the feedback system of Fig. 1, under the
conditions of Corollary 2, but with an added slope re-
striction on NV, and a more general type of multiplier K.
CoroLLaRY 3.3 If:

(I) N is an operator in K, incrementally inside®
{cx, 6} where 3> 0.

(I1) H is an operator in L, which can be factored into
a product H=KH,, where K is in }C and Hi is
L.

(111) H, satisfies the circle conditions for the produci
sector {a, ,8} X {K(OC), K(O)} with offset 8,
where §>0.

(IV) There is'® a w,” such that K(w.') = w..

(V) Either K()>0 or a;=0.

Then E, and E, are Ly-bounded.
Corollary 3 is obtained immediately by the factoriza-
tion method, with the help of Lemma 3.

REeMaRK: For suitably restricted N, Corollary 3 has
several advantages over Popov’'s method:

(i) The shift away from the critical region, which de-
pends on K(jw), can be controlled more flexibly as a
function of w. This is likely to be useful where a nega-
tive magnitude slope d/dw! H(jw)! is followed by a
positive slope at a larger w.

(ii) a2 need not be zero if K(=)>0.

(1ii1) If >0, the critical region predicted by Corol-
lary 3 (a disk) is sometimes smaller than by Popov’s
method (which always gives a half-plane for a>0).

ExaMPLE 3. Let N be the operator in 9 whose graph
is shown in Fig. 9(a) (the same as in Example 2), and
let H have the Laplace transform

1
H(s) =kr—1{s+ }
s+t

{ s i ris }
s+ 706+ Y s+ +

where 7>>1. For what values of % is the closed loop
bounded? Compare Corollaries 1, 2, and 3.

Figure 10(a) illustrates the significant features of the
Nyquist diagram of H(jw) (not drawn to scale). Ob-
serve that H(jw) has two “pass bands,” one for r2<w
<r-! and the other for r <w <r?; these “pass bands”
produce the two loops in Fig., 10(a). Note that the
critical region is the same half-plane in all corollaries,
namely, Re{ . } > —1+44.

8 Corollary 3 and the factorization method, in a functional setting,
were introduced by the author in Reference {1al. A related method in
a Liapunov setting has been exploited by Brockett, Willems, and
Forys [4a]~[4b]. )

N(x)—N(y)

x—y<p.
0 This condition is satisfied automatically if K(»)>0. If
K(%)=0, then it is satisfied if 2 is in L.

Sie, a<
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Corollary 1 predicts boundedness for —1<k<8
approximately.

Popov’s method is useless here. A comparison of Figs.
10(a) and 10(b) shows the effect of removing the multi-
plier A/s+\: Hi(jw) is moved away from the critical
region in the lower left half-plane (in the decaying edge
of the lower pass band, r!<w<1); however, this im-
provement is more than offset by the bulge introduced
in the upper left half-plane (in the rising edge of the
upper pass band, 1 <w<7).

What is obviously needed here is a multiplier that
acts like Popov’s in the lower pass band, but has no ef-
fect in the upper pass band. The ®&€ multiplier K(s)
=7r"1(s+1)(s+7"1) accomplishes just this. Its removal
shifts Hi(jw) entirely into the right half-plane [Fig.
10(c)]. Corollary 3 therefore implies that the closed loop
is bounded for all positive %, in fact, for 2> —1.

6. COMMENTS AND CONCLUSIONS
6.1. Circle Conditions

The main result here is the Circle Theorem. The Cir-
cle Theorem is a sufficient condition for closed-loop
stability, which requires the nonlinearity N to lie in-
side a sector, but which leaves N free otherwise. The
other conditions are all corollaries of the Circle Theo-
rem.

Corollary 1 is probably the most useful result, since
it roughs out the region of stability, with a minimum of
restrictions on N. However, it is often conservative.

Corollaries 2 and 3 provide a tradeoff between limita-
tions on N and limitations on H(jw). Probably more sig-
nificant than the actual conditions is the fact that there
is a method of generating them, namely, the factoriza-
tion method.

The results derived in Part I1 hold for nonzero initial
conditions in the linear element, provided the “zero-
input response” w, satisfies the indicated restrictions.

6.2. Extensions of the Theory

The theory has been extended in several directions
(see [1b]), notably,

1) to L,
2) to systems with a limited rate of time variation.

The extension to L, involves the use of exponential
weighting factors, which transform L, functions into L,
functions. The extension to time-varying systems in-
volves the use of a shifted Nyquist diagram, H (o +jw),
in which ¢ depends on the rate of time variation.

6.3. Gain and Phase Shift in Relation to Nonlinear Time-
Varying Systems

The stability of a linear time-invariant feedback sys-
tem depends on the amounts of gain and phase shift
introduced by the open loop. Are similar considerations
involved in nonlinear, time-varying problems? Of course
the classical definitions of gain and phase shift, in terms
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of frequency response, have no strict meaning in non-
linear or time-varying systems. However, stability does
seem to depend on certain measures of signal amplifica-
tion and signal shift. Thus the norm ratio | Hx]: /||x]]
plays a role similar to the role of gain. Furthermore, the
inner product {x, Hx), a measure of input-output cross-
correlation, is closely related to the notion of phase shift.
For example, for linear time-invariant operators in £
the condition of positivity, {(x, Hx)>0, is equivalent
(by Lemma 1) to the phase condition,

| Arg {H(jo)} |

< 90°.

It may be worthwhile to see what the theorems of
Part I mean in terms of gain and phase shift. This can
be done with the help of Lemma 1. Theorem 1 of Part
I can be viewed as a generalization to nonlinear time-
varying systems of the rule that, “if the open-loop gain
is less than one, then the closed loop is stable.” Theorem
3 can be viewed as the generalization of, “if the open-
loop absolute phase shift is less than 180° then!! the
closed loop is stable.” Theorem 2 places gain and phase
shift in competition, permitting large gains at small
phase shifts, etc.

6.4. Conclusions

Some of the salient features of the functional theory
are:

(1) It provides an alternative to the method of Lia-
punov, an alternative resembling the classical Nyquist-
Bode theory.

(ii) Itis well suited to input-output problems.

(iii) It is free of state-space restrictions, and is there-
fore useful for distributed systems, hysteritic systems,
etc. It also lends itself well to multivariable systems.

(iv) It unifies several results in stability theory. In
particular, it is noteworthy that Popov’s condition, the
slope-restricted-N result, etc., can all be derived from
the Circle Theorem.

(v) Ithas led to some new results, notably Corollary
3 and [1b].

The theory outlined here is probably still far from its
definitive form. Nevertheless, it provides enough in-
sight to make possible a reasonably systematic design
of stabilizers.

APPENDIX A
DEFINITIONS OF CONICITY AND POSITIVITY
It will be assumed that H is a relation in ®, and that
¢, 720, and < are real constants.
GrouP 1. “Incremental” Conditions

H is incrementally interior conic if
! | . I,
5|(Hx — Hy), — ¢(z — }’)z,l < 7'][(-% - ;v)c];,
U There are two positive elements in the open loop; each con-

tributes an absolute phase shift of less than 90°; the open-loop ab-
solute phase shift is therefore less than 180°.



1966

H is incrementally inside the sector {a, ﬁ} if
(Hx — Hy), — alx — y), (He — Hy) — B(x — 3)1) < 0;
H is incrementally positive if
((z = ), (Hv — Hy)e) 2 03

{where the inequalities of Group I hold for all x and ¥
in Do(H) and all £>0).

The definitions of an operator that is “exterior” conic
or “outside” a sector, are identical to the preceding ones
except for a reversal of the inequality sign, and will
therefore be omitted.

ReEMARK: If H is incrementally inside {«, 8} then H
is inside {a, ﬁ}. Similarly, each inequality in Group I
implies a corresponding inequality in Section 3.

Grour 1. “Instantaneous” Conditions

H is instantaneously inside the sector {«, B} if
a < Hz(@)/x() £8 (€ Ly t 2 0; 2(1) # 0);
H is instantaneously positive if
x()-Hx(t) > 0 (x € Lye; t > 0).
Grotup 111. “Instanianeous Incremental” Conditions

H is instantaneously incrementally inside the sector
{a, B} if
Hx(t) — Hy(t
L HQ) — B0 _
=0 — 3Q)
(x € Ly t 2 0; 2(8) — »(6) = 0).
H is instantaneously incrementally positive if
[Hx(t) — Hy®)]-[2() — y()] >0 (2 € Lyt > 0).

ReMARK: If H is instantaneously inside {a, 6}, then
H is inside {e, B}. Similarly, each inequality in Group
11 implies a corresponding inequality in Section 3. Also
each inequality in Group III implies a corresponding in-
equality in Group I1.

APPEXDIX B
LEMMA 1

The proof of Lemma 1(b) will be based on the Prin-
ciple of the Argument, a theorem of Paley and Wiener,
and Parseval’s theorem. The proofs of Lemmas 1(a)
and 1(c), being straightforward applications of Parse-
val's theorem, will be omitted.

Some preliminary lemmas and properties will now be
introduced.

DEeFINITION: If % 4s a function in L, then its L.I.M.
TRANSFORM 15§

i

X(s) = Lim. x(t) exp (~st)dt.

T—= 0

(¢20) (B
The Li.m. transform of X (s) is

W

) ,
x1(r) = i lLim. X(jw) exp (Jwr)dew. (7 real) (B2)

T W—oe —-W
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The limits in the mean in (B1)-(B2) exist, and x:(7)
=x(7).12

B.1. Properties of Transforms

In the following properties, H is an operator in £
having a Laplace transform H(s).

(A) The integral defining H(s) [see (6)] converges
and is bounded for ¢ >0y, since

fwlz(t) exp (—st)dt

< f | 6] ] exp (—aot)di = const.
0

(B) H(s) is analytic for ¢ >0,.1

(C) For ¢=0, lims| .0 H(S) =k

(D) I xisin L, then Hx isin Ls.%®

(E) If the 1i.m. transforms of x&E L, and Hx& L, are
X(s) and Y(s) respectively, then!?

Y(s) = H(s)X(s) (B3)

One consequence of Property D is that every map-
ping of the type defined by the right-hand side of (2)
is an operator!® on Ls., and belongs to Q..

B.2. Some Consequences of Nonencirclement

A contour in the complex plane will be said to have
Property N if it does not pass through or encircle the
origin.

LemMyA 4. If the Nyquist diagram of H(s) has Prop-
erty N then: (a) 1/H(s) is analytic for ¢ >0. (b) If the
inequality 1/] H(a—l—jw)l <M holds for =0 then it
holds for all 62>>0.

Proor: (a) Since H(s) is analvtic for ¢>0, it is
enough to show that H(s) 0 for ¢ >0 to prove (a). For
this purpose several contours are defined: Let T', denote
the jw-axis (as shown in Fig. 11); for R>0 a constant,
let Tk denote the clockwise contour bounding the semi-
circular region |o-+jw| <R where 6>0; let I',~Tx de-
note the difference contour;and let H(I',} and H(T'. —T'z)
denote images of the respective contours, each aug-
mented with the point A,.

1t will be shown that H(T'x) has Property N for
R>Ry; since by hypothesis H(s) is analytic for ¢2>0,
and has no zeros on the jw-axis, Lemma 4(a) follows by
the Principle of the Argument.

12 See Widder [8], ch. II, Theorem 10.

13 Jbid., Theorem 5a.

14 The special case s=jw is implied by the Rieman-Lebesgue
theorem (Titchmarsh {9a), Theorem 1). The general case follows
from the special case and from Properties 4 and B by a theorem of
Phragmén-Lindelsf (Titchmarsh [9b], sec. 5.64).

16 This follows from Theorem 63 of Titchmarsh [9a], which implies
that the convolution of an L function with an Z; function is in L.,
and has a transform of the type (B3).

16 Suppose that x is in La; x; is certainly in L», and H(x;) is in L,
by Property D; since [H(x:)}i=[Hx],, it follows that [Hx], is in L,;
i.e., Hx is in Ly, Thus H maps L, into Ls,; since H also maps o into
0, it follows that H is an operator on L:. and in Ro.
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Fig. 11, Contours.

To prove that H(I'z) has Property N observe that
HIp)=HT.)+HTr-T,); since H(,) has Prop-
erty N by hypothesis, it is enough now to show that
H(I'g—TI',) has Property N. This can be accomplished
by showing that H(I'x—T,) lies in a circle centered at
k. and not including the origin. The last assertion is a
consequence of two facts.

(i) There is an Ro>0 for which, for R>R, and s in
(Tr—T.), | H(s) —he| <% b .
(i) h,5=0.

(i) is obtained from Property C of Appendix B.1 for
|s] 2> Ry, and therefore certainly holds for sin (T —T,,).
(ii) holds since

he = lim H(jw),

and since H(jw)#0 by Property N.

(b) This is a special case of the Maximum Modulus
Theorem of Phragmén-Lindelof.'" The theorem implies
that a function analytic in a half-plane, and bounded
on the boundary, is bounded throughout the half-plane.

B.3. A Paley-Wiener Lemma

A complex-valued function W(s) will be said to
satisfy the Paley-Wiener conditions if

(PW1) W(s) is analytic for ¢ > 0, and

(PW2) f | W (o + jw) |2de < const.

—x

(¢ > 0).

The following lemma is a modification of Theorem 3
of Paley-Wiener [10], and is stated without proof.

LEymMaA 5. (a) If wis in Ly, w,=0, and W(s) is the
lim. transform of w(r), then W(s) exp (s{) satisfies the
Paley-Wiener conditions. (b) Conversely, if {20 and
W(s) exp (st) satisfies the Paley-Wiener conditions,
then there is a function w in L, having the properties
that w,=0 and that W(s) is the Li.m. transform of w.

B.4. Proof of Lemma 1(b)

Let xin Ly, and ¢t >0 be given. Since H is linear, it is
enough to show that H is conic with parameters ¢ and 7;

17 Titchmarsh [9b], sec. 5.61.

JULY
that is,
|(Hx — cx) | > #|x)]. (B4)

For this purpose, let y2(Hx—cx) and §2 H(x,)
— [Hx]:. Hence
¥y = (Hx — cx), = H(x,) — cx, — 6. (B3)

Now x; is in L,. Hence H(x,) is in L, by Property D of
Appendix B.1. Since [H(x;)]|,=(Hx),, it follows that
(Hx). is in L,. Thus 8 is in L,, all terms in (B5) are in
L,, and by Property E,

Vi(s) =

where V,(s), X(s), and A(s) are the l.i.m. transforms of

¥, %; and 8. Hence
R A
¢ H(s) — cf

(AW

A (s) -
Now the braced terms in (B7) are Li.m. transforms of
functions in L,; for X,(s) this is true by definition; for
the remaining terms, this can be proved by the reasoning
given below in Assertion 1. Suppose that A(s)/H(s)—c¢
is the Li.m. transform of a function ¢(7); it follows that

e LT ey AGe)
I]:" i ;""(Jw) H(]w) — ¢

2md
(Parseval’s Theorem)

1 r= t(]‘J K
2rd o 1 H{jw) — !

1
. f | ¥.(je) |2de
27y

—x

H(s)X(s) — eX(s) — A(s) (B6)

X)) (B7)

2

[by (BT)]

IA

[by inequality (8) of Section 3.2]

1 .
= —|lyd;? (Parseval’s Theorem) (B8)
r
It will be shown, in Assertion 1, that ¢(v) =0 for almost
all 7 <t. Therefore

[loe = g2 = [l=d[* + [lgl® > [[wu]

(B8) and (B9) imply (B4).

AsseRTION 1. The expression A(s)/[H(s)—c] is the
Li.m. transform of a function ¢ in L.; furthermore g(r)
=0 for almost all 7 <!.

ProoF OF AsserRTion 1. By Lemma 5b, it is enough
to show that [A(s) exp (st)]/[H(s)—c] satisfies the
Palev-Wiener conditions.

To prove (PW1), observe that the following three
terms are analvtic for ¢ >0: A(s), because it is the l.i.m.
transform of an L, function; exp (sf), because it is ana-
Iytic throughout the plane; [H(s)—c]-!, by Lemma 4
and the hypothesis on the Nyquist diagram. The prod-
uct of these terms must therefore also be analytic for
a>0.

To prove (PW2), observe that

(B9)



1966

r

—0

A(s) exp (st)|?
H(s) — ¢

< const.

< % f_:| A(s) exp (st) | de
(¢ > 0) [by inequality (8)]

(Since 8& L, and 8,=0 by construction, the last in-
equality is implied by Lemma 5(a).) Q.E.D.
AprpPENDIX C
LeEMMA 2

A preliminary assertion will be proved first.
AssERTION 2. If N in 9% is positive, K is in £, and
v =Kz, then

fdy
f Ny (n)dr 2 0. (C1)
o dr
PROOF OF ASSERTION 2.
t dy 1/([)
[ Zvoear = [ xenay. (2
o dr Yo

Since K is in £, y(¢) is given by a convolution integral,
whose kernel is fixed for a fixed x, and whose limits of
integration are 0 and ¢; therefore y(0) =0. Furthermore,
since N is positive, its graph lies in the first and third
quadrants. It follows that the right-hand side of (C2)
is non-negative. Q.E.D.

C.1. Proof of Lemma 2

Part a) It is required to show that, for any given x in
L;. and any given ¢ >0, the inequality
3
f x(r) - [NKx(r)|dr > 0 (C3)
0

holds. For this purpose, make the following substitutions:

Write y4 Kx, and observe that, since K(s) =&N/(s+)\),
v is differentiable and
=241 C4)
. A )
ERT SR (

(C3) is therefore equivalent to

fo {% Zi%+ - "(T)} N(¥())dr 2 0 or

'Y vomar + - v N endr > 0. (Cs
wd, ¥(1) 'T+; i (1) - N(y(r))dr > 0. (C5)

Now k and A are positive by hypothesis; the first integral
in (C3) is non-negative by Assertion 2; the second inte-
gral is non-negative, since IV is a positive operator;
therefore (C3) is true. Q.E.D.

Part b) 1t will be assumed, for simplicity, that 8> 0.

Case A. Suppose a>0. It must be shown that NK
is inside {oz, B} X {0, k}. This is equivalent to saying
that NK is inside {0, 8}, or that

((NKx),), (NKx — kBx):) < 0. (Co)
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(C6) is equivalent to the inequality
k(i (NN9)) 2 || (V)2 (€7

where y = Kx. Now recalling that (x,, (Ny):) equals the
left-hand side of (C5), we get

e, 99 2 8 [ 30 NO@)dr.

Observing that, for a0, N satisfies the inequality
By(r) - N(y(r) > [N(y(r)) ]2, we get
t

k8(x,, (N3)2) > f [¥ (v(r)) J2dr,

0
which implies (C7). Q.E.D.

Case B. Suppose a<0. Decompose N(x) into two
parts, N(x) = N_(x) +N_(x); let N, (x)=N(x) for N(x)
>0 and N.(x) =0 elsewhere, and let N_(x) be similarly
defined.

Since N, is clearly inside {0, B}, Case A implies that
N.K is inside {0, k8}. Similarly N_K is inside {ka, 0}.
On summing the sectors of NyK and N_K (by the Sum
Rule of Part I) it is found that NK is inside {ka, kﬁ} ;
that is, inside {e, 8} X {0, £}. Q.E.D.

APPENDIX D
LEMMA 3

Before proving Lemma 3, a few related assertions
will be introduced.

AsseERTION 3. Let K be an operator in ®C, x a fixed
element of Ly, and y 2 Kx. Then x has a “Foster expan-
sion” in y;!® that is, x can be expressed as a finite sum,

= Z Fiy’
i=0

in which F, are operators mapping the image under K of
Lg, into R[0, =), as follows:
Case 1. Foy=K~'(0)-»
Casg 2. If 7=1, 2,
has a Laplace Transform,

Fi(s) = ]ZiS//(S + 01’); (kz > 07

Casg 3. Fpy=h,yif K(®)=0and F,y=
where 4,,>0.

AsserTION 4, If N is incrementally positive, and
(x5, [Ny].)>0 then (x;, [N(x+y)].)>0.

PrOOF OF AsSERTION 4. It is enough to show that

(w0, [N(x + 3)e]) = (s [Ny]) 20 (D1)

, (m—1), then F;is in & and

8; > 0).

0 otherwise,

But the left-hand side of (D1) can be expressed as
((x+ e — v, [N+ 0] — (V)0

which has the form {x;;—x2;, Nx1:—Nxy,), and is non-
negative, since N is an incrementally positive operator.
Therefore (D1) holds. Q.E.D.

18 See Guillemin [2], p. 115.
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ASSERTION 5. If N is an operator in 9, incrementally
inside a sector {a, 6} where o <0 and 3>0, then N can
be decomposed intc N=N,-+N_, where N_ is inside
{a, 0}, and N, is inside {0, 8}.

ProoF oF AsserTioN 5. Since N is incrementally in-
side a sector, its graph N is continuous and has bounded
variation on every finite interval. Consequently N can
be expressed as an integral, N(x)=[in(x")dx’. Let
ne(x)=n(x) if n(x)>0, and zn (x)=0 if n(x) <0; let
Ni(x) = [o*ni(x")dx’. Clearly N, has the desired prop-
erty. N_ is constructed similarly. Q.E.D.

D.1. Proof of Lemma 3

Part a) Let x be any given element of Ls,, and ¢ any
given point in [0, «); it is required to show that

{x;, (NKx),) > 0. (D2)

Letting v2 Kx, and recalling that x can be expressed
by the Foster expansion

= Z F.iy

i=0

(see Assertion 3), (D2) is equivalent to

> (B (V)) 2 0. (03)

It will be shown that each component on the left-hand
side of (D3) is non-negative.

Case 1. Here Foy=K~'(0) -y. Hence {(Fey):, (Ny):)
= [K-%(0)](y,, (Ny),); this is non-negative since N is
a positive operator, and since K(0) is necessarily posi-
tive.

Cask 2. Here Fi(s)=h;s/(s48,). Let

¢
= /Z«;_lf F,'}’(T)d:".
0

It follows that y=35+6,z almost everywhere, and that

Fiy="h; almost everywhere. Hence
((Fy)o, (Y)Y = hile, [N(z + 0:2) 0. (DY)
Now, observing that 6;>0, Assertion 2 implies that

{#, |N(@:2)].) is non-negative. Observing that k; is posi-
tive, the right-hand side of (D4) is non-negative by
Assertion 4. Thus Case 2 is proved.

Cask 3. Here Foy=h,y if K(x)=0. Hence {((F.v).,
(NY) ) =hn(¥:, (N¥),). Case 3 follows by Assertion 2.

Since the inner product is non-negative in all three
cases, (D3) holds. Q.E.D.

Part b) Assume, for simplicity, that 8>0.

Case A. If a=0 then, by reasoning similar to that
used in Lemma 2(b), (C5)-(C7), the following inequal-
ity is obtained:

{xy, (NKx)) > [BEO)]7Y| (Vw2
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Hence NK is inside {0, BK(0)}, which equals {0, 8}
X {0, K(0)}.

Case B. If ¢>0 then NK is decomposed into three
parts

NK = {[N — oI|K} + [a[K — K()-1]}

+ {aK(x)-I}. (DS5)

Now the three parts lie in the sectors {0, B—a)K(0) } ,
{0, a[K(0)—K ()]}, and {aK(x), aK(®)}, respec-
tively. (The first two of these sectors are determined by
the rule formed in Case A, after observing that [N—aI]
is inside {0, B—a}, and that [K—K(»)-I] is inside
0, [K(0) —K(»)]}; the third sector is simply the sec-
tor of a constant times the identity.) On summing the
three sectors (by the Sum Rule of Part I), it is found
that NK is inside {aK(OO), BK(0) } ; that is, inside
fa, B} X {K(), K(0)}
Cask C. If <0, N is decomposed into Ny and N_, as
in Assertion 5. This case then follows by the reasoning
used in Case B of Lemma 2. Q.E.D.
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