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I. INTRODUCTION 

R ECURSIVE algorithms,  where  stochastic  observa- 
tions enter are  common  in  many fields. In the control 

and estimation  literature  such  algorithms  are widely dis- 
cussed, e.g., in  connection with adaptive  control, (adap- 
tive) filtering and on-line  identification. The  convergence 
analysis of the  algorithms is not seldom  difficult. As a 
rule,  special  techniques  for  analysis are used for  each  type 
of application and often  the  convergence  properties  have 
to be studied only by simulation. 

In this paper  a  general  approach  to  the  analysis of the 
asymptotic  behavior of recursive algorithms is described. 
In effect, the  convergence  analysis is reduced  to stability 
analysis of a deterministic,  ordinary  differential  equation. 
This  technique is believed to  be a fairly general  tool and 
to  have  a wide  applicability.  Applications to various prob- 



lems  have  been  published  in [1)-[4] and some theory was 
presented  in [5 ] .  

The objective of the  present  paper is to give a  compre- 
hensive presentation of formal results and useful tech- 
niques  for  the convergence analysis, as well as to illustrate 
with several examples how the  techniques  can  be  applied. 

In Section I1 a general recursive algorithm is described 
and discussed. A heuristic treatment of the convergence 
problem is given in Section 111 and this leads  to  the basic 
ideas of the  present  approach. Section IV contains  a 
discussion of the  conditions which are imposed on the 
algorithm in order  to prove the  formal results. These 
theorems are given in Sections V and VI. The theorems 
suggest certain  techniques for the convergence analysis, 
and these aspects  are  treated in Section VII. Several 
examples of how the  theorems  may  be used, some of them 
reviewing previous applications are given in Section VIII. 

11. THE ALGORITHM 

A general recursive algorithm  can  be written 

x ( t ) = x ( t -  l ) + y ( t ) Q ( t ; x ( t -  l ) , q ( l ) ) ,  (1) 

where x(.) is a  sequence of n-dimensional column vectors, 
which are  the  objects of our  interest.  We shall refer to x( .) 
as “the estimates,” and they could, e.g., be  the  current 
estimates of some  unknown  parameter vector. They could, 
however, also  be parameters that determine  a  feedback 
law of an adaptive  controller, etc., and we shall be precise 
about the  character of x (  -) only in the  examples below. 
The sequence y ( - )  is assumed  throughout  the  paper to be 
a  sequence of positive scalars. The rn-dimensional vector 
q( t )  is an observation obtained  at time t ,  and these are the 
objects  that  cause x ( t -  1) to  be  updated  to  take new 
information  into account.  (The  notion  “observation”  does 
not have  to  be  taken literally. The variable q may very 
well be  the result of certain  treatment of actual measure- 
ments.) The observations are in general functions of the 
previous estimates x( -) and of a  sequence of random 
vectors e( .). This  means that the observation is a  random 
variable, which may  be  affected by previous estimates. 
This is the  case, e.g., for  adaptive systems, when the  input 
signal is determined on  the basis of previous  estimates. If 
the  experiment designer has  some test signal at his dis- 
posal, this may be included in e(  e ) .  

The function Q ( - ;  a;) from R X R“ X R“ into R “  is a 
deterministic  function with some regularity conditions to 
be specified below. This  function, together with the  choice 
of the  scalar  “gain”  sequence y (  -) determine entirely the 
algorithm. 

We shall not work with completely general dependence 
of q ( t )  on x(*), but the following structure  for  the  genera- 
tion of q( .) will be used: 

r p ( t ) = A ( x ( t - l ) ) r p ( t - l ) + B ( x ( t - l ) ) e ( t ) .  (2) 

Here A (.) and B ( - )  are rnlm and mlr matrix  functions. 
Remark: It is perhaps  more  natural to think of an 

observation @ ( t )  as the (lower dimensional) output of  a 
dynamical system like (2), @ ( t ) = C ( x ( t -  l))rp(t). How- 
ever, this case is naturally  subsumed in the  present  one, 
since q ( t )  may enter in Q only as  the combination @(t).  

The  assumption (2) seems to  be  appropriate  for  many 
applications. The same results as those below can  be 
obtained  also  for  nonlinear  dynamics. 

q ( t ) = g ( t ; q ( t -  l ) , x ( t -  l),e(r)) (3) 

and the  proofs  for this case are given in [7]. 
Throughout this paper it  is assumed that  the  estimates 

are desired to converge to some  “true” or “optimal” 
value(s). Since Q ( t ,x ( t  - l ) , q ( t ) )  is a  random  variable, 
with, in general,  nonzero  variance, convergence can  take 
place only if the noise is rejected by paying less and less 
attention  to  the noisy observations, i.e., by letting 

y(t)+O as t + ~ .  (4) 

In tracking  problems, when a time-varying parameter is to 
be  tracked using algorithm ( l ) ,  this condition is not feasi- 
ble. Then y(t) usually tends  to some small, nonzero value, 
the size of which depends on what is known about  the 
variability of the tracked  parameters  and  about  the noise 
characteristics.  This  case is not  treated  here,  but it is 
reasonable to assume that  analysis  under  the  condition (4) 
also will have some relevance for  the  case of tracking 
slowly varying  parameters. 

Suppose we have a  linear,  stochastic, discrete-time sys- 
tem, governed by a linear output  feedback law, which at 
time t is determined by x([- 1). Then the behavior of this 
overall system can be described by (2), with q ( r )  consist- 
ing of lagged inputs and outputs.  Therefore  the  algorithms 
(1) and (2) can be understood  as  archetypical for adaptive 
control of a  linear system. Indeed this setup is useful for 
analysis of certain  adaptive  controllers,  as will be exem- 
plified below, but  the basic algorithm ( I ) ,  (2) also covers 
several other cases of interest. 

111. HEURISTIC  ANALYSIS 

The  algorithm (l), (2) is fairly complex to analyze, 
being  a time-variant, stochastic,  nonlinear  difference 
equation.  Notice  also  that  the  correction x ( t ) - x ( t -  1) 
depends in general via q ( t )  implicitly on all old x(s) .  
Therefore, while (1) certainly is recursive from  the user’s 
point of view, it is not so for analysis purposes. 

In this section we shall illustrate heuristically how a 
differential  equation  can be associated with (l),  and how 
it seems reasonable  that  asymptotic  properties of (1) may 
be  studied  in terms of this differential  equation. The 
formal  analysis and results follow in the next two sections. 

Consider 

x ( t ) = x ( t -  I ) + ~ ( t ) Q ( x ( t - l ) , q ( t ) ) ,  ( 5 )  

where for simplicity we let Q be time independent. As 
remarked before, q ( t )  depends on all previous estimates: 
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Now, if (2) is exponentially  stable,  then  the  first  terms  in 
(6 )  will be very small and, for some M ,  We  therefore  have  some  reason  to believe that the 

sequence of estimates x (  e) asymptotically  should follow 
the trajectories x D (  e )  of (1 1). 

(We could also have  related (9) to  the  difference equa- 
tion 

Moreover, it follows from (5 )  and (4) that the  difference x D ( t ) = x D ( t - l ) + y ( t ) f ( x D ( t - l ) ) ,  (13) 
x ( t )  - x( t - 1) becomes smaller as t increases.  Therefore, 
for  sufficiently large 1, we have x ( k ) z x ( t ) ;  t 2 k > t - but the  differential  equation is easier to handle since it is 
2M.  Hence, time-invariant.) 

It now seems reasonable  that  asymptotic  properties of 
algorithm (l), (2) may  be  studied  in terms of the differen- 

j = k - M  tial equation (1  1). This  heuristic  discussion is perhaps  not 
very convincing, but  along  a  similar  path,  though with far 

k =  1 

cp(t)= 2 ( i A ( x ( i -  1)) B ( x ( j -  I))+). 1 j = r - M  i = j + l  

k 

cp(k)= c [ A ( x ( f ) ) l k - ’ B ( x ( t ) ) e ( j )  

k 

2 [ A ( x ( t ) ) ] k - i g ( x ( t ) ) e ( j )  A @ ( k ; x ( t ) )  (7) proven. These are given  below. 
more  technicallabor,  formal results  to this effect  can  be 

j =  1 

for t 2 k 2 t - M .  Furthermore, Iv. ASSUMPTIONS ON THE ALGORITHM 

Q ( x ( k -  l),cp(k))zQ(X(r),@(k;x(t)))=f(x(t))+w(k) In order to  prove  the  formal  results,  certain  regularity 
(8) conditions  on  the  functions Q, A ,  and B and  on the 

driving  “noise”  term e, have  to  be introduced.  Some of 
where these are fairly  technical, but it is believed that  none is 

very restrictive. Several sets of assumptions  are possible, 
f ( x ) = E Q ( x , + ( k ; x ) )  and we shall give a few. In particular,  there is a possibility 

and  hence w ( k )  is a  random  variable with zero  mean. to  treat the  sequence e(  e )  either  in a stochastic or  in  a 
deterministic  framework. 

We shall  start by  giving a  formal  definition of + used in Using (8) ,  we can  approximately  evaluate 

f + S  the previous section. Let 

D, = { xlA (x) has all eigenvalues strictly 
f + S  t + S  

= x ( t ) + f ( W )  c Y(k)+ c v ( k ) w ( k )  

X X ( ‘ ) + f ( X ( t ) )  c Y(kh (9) 1 . 4  (x )k l  < CA(X)k;  h ( x )  < 1.  (‘4) 

inside  the  unit circle}. 

k = t +  1 k = t +  I Then for  each x E D,, there exists a A = A(x), such  that 
f + S  

t +  1 
Take FE D, and define  the  random  variables @(t,i?) and 

where  the  last  step  should follow since the  last term is a c(t,A,c), A < 1 ,  by 
zero  mean random variable  which is dominated by the 
second  term. Expression (9) suggests that  the  sequence of + ( f , F ) = A ( F ) + ( t -  l , X ) + B ( y ) e ( t ) ;  @(O,X)=O 
estimates  more or less follows the  difference  equation (15) 

X ” ( T + ~ 7 ) = X D ( 7 ) + ~ T f ( X D ( T ) )  (10) c ( t , A , c ) = A u ( t -  l,A,c)+cle(t)l; u(O,A,c)=O. (16) 

where Ar corresponds  to 
t + S  x Y(k). 
I +  I 

It is useful to interpret (10) as a way of solving the 
differential  equation (AT small), 

where  the  (fictitious) time r relates to the  original time f in 

Let DR be  an  open,  connected subset of D,. The regular- 
ity conditions will be  assumed  to  be valid in DR. Now,  the 
first  set of assumptions is the following. 

A.1: e ( . )  is a  sequence of independent  random  vari- 
ables  (not necessarily stationary  or with zero means). 

A.2:  le(t)l< C with probability one (w.p.1) all 1. 

A.3: The function Q ( f , x , ( p )  is continuously  differentia- 
ble  w.r.t x and (p for x €  DR. The  derivatives  are, for fixed 
x and (p, bounded in t .  

A.4: The  matrix  functions A ( . )  and B (  e )  are Lipschitz 
continuous in DR. 
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A.5: limr,mEQ(t~X,ij(r,F)) exists for : E D ,  and is 

A.6: E;"y(t)= 30 
A. 7: Zry(t)p < co for some p. 
A.8: y(- )  is a  decreasing  sequence. 
A.9: lim,,,sup[l/y(t)- l / y ( t -  1)]< cx:. 

denoted by f(3. The expectation is over e( .). 

These  conditions will be referred to as "assumptions A." 
A.1 introduces  the  stochastic  structure  into  the  setup. 
While A.2 certainly is most reasonable  for all practical 
purposes,  it is somewhat  unattractive  from  a  theoretical 
point of view, since it excludes, e.g., the  common  Gaus- 
sian models for noise. Below (assumptions B) are given 
conditions which allow more general noise. Conditions 
A.3 and A.4 are reasonable regularity properties, and A.5 
is the basic assumption  that makes it possible to  associate 
(I), (2) with a  differential  equation.  Condition A.6 makes 
it possible for  the  algorithm (1) to move the  estimate  to 
the desired limit, regardless of the  initial value, and it is 
thus obviously necessary. A.7 gives a  condition on how 
fast y(t) must  tend to zero. This is considerably less 
restrictive than  the usually given condition 

g y2(t) < 00. (17) 
1 

Conditions A.8 and A.9 are  motivated by technical argu- 
ments in the proofs, but they have so far not  appeared to 
be restrictive. For example, it is easy to see that  the 
sequence y(t) = Ct -a satisfies A.6-A.9 for 0 < a < 1. 

If  we would like to alleviate A.2, further regularity 
conditions on Q are  required.  This gives  us our  second set 
of assumptions. (3 (F,p) denotes  a p-neighborhood of X, 
i.e.. 9 ( . ? , p ) = ( x I I X - x I < p } . )  
B.1: e ( . )  is a  sequence of independent  random vari- 

ables  (not necessarily stationary or with zero means). 
B.2: Ele(r)lP exists and is bounded in t for each p > 1. 
B.3: The  function Q(t,x.q) is Lipschitz continuous in 

x and q: l Q ( t , x l , q , ) - Q ( t , ~ 2 . q 2 ) ~ < : 7 , ( ~ . ~ . ~ . t ' ) { l ~ 1 -  
x21 + Jql - q21} for x, E '3 ( x , p )  for  some p = p ( x )  > 0 where 
X E D , ;  q,€$$(QI,t2), u > o .  

B.4: I X l ( x , ( p l , p , ~ l ) -  Xl(~~,qz,p,c2)1 < X*(X,V,~,G,W) 
-{19;1-q2,21+Iv,-c21} for q , ~ % ( q , w )  and ~ E : & ( E , W ) .  

B.5: A (.) and B ( e )  are Lipschitz continuous in DR. 
B.6: lim,,,EQ(t,F,@(t,F)) exists for FED, and is 

B. 7: For x E D,, the  random  variables Q ( t ,x ,@(t ,x ) ) ,  
%,(x, @ ( t ,  x) ,  d x ) ,  c( t ,  X, c)) and 3&, @(t,  x) ,  d x ) ,  
u(t,h,c),  c(t,h,c)) have  bounded  p-moments  for all p > 1, 
and all X <  1, c<co.  Here @ ( - , x )  and c(.,X,c) are  the 
random  variables  defined by (15) and (16). 

denoted by f(F). The expectation is over e( .). 

B.8: Err ( [ )=  00. 
B.9: Z;"y(t)p< 00 for some p. 
B.10: y(*)  is a  decreasing  sequence. 
B.11: lim,,,sup[l/y(t)- l /y ( t -  1)]< co. 

Conditions B.4, B.3, and B.7 admittedly look somewhat 
complex, but they are  as a rule easy to check in a given 
situation, especially since Q ( t , x ,  q) is a simple function  of 

x and q in  most  applications. The conditions B.3 and B.4 
effectively require that Q ( t , x , q )  is twice continuously 
differentiable and B.7 implies that Q and its derivatives 
must  not  increase  too  rapidly with q and u. 

In these two cases the  algorithm (I) ,  (2) is treated 
directly  in  a  stochastic  framework, due  to assumption 
A. 1 = B.l. In certain cases it may  not be suitable to  treat 
e( e )  in (2) as a  sequence of random variables. Naturally 
the  algorithm (l), (2) still makes sense, even if e( .) is a 
given, deterministic  sequence.  Convergence of (1) will 
than  depend,  among  other things, on the  properties of this 
sequence e ( - ) .  In such a  case we may work with the 
following assumptions. Let X, be  defined as in B.3 and let 
@(e,$ and v ( . ,h , c )  be given by (15), (16). Introduce  the 
quantities z (. , Y) and k,  ( e ,  X-, X, c) by 

z ( r , q = z ( f -  l ,X)+y(t)[ Q ( I , X , ~ ( t , X ) ) - z ( r - l , X ) ]  

z(O,F)=O (I8a) 

k,(t.x,X,c)=k,(t- I .ZA,c )+y( t )  

. [ n ; , ( x , @ ( r , F ) , p ( F ) , v ( t , X , c ) )  

*(l+c(t,A,c))-k,(t-  l,F,A,c)]; 

k,(O,X,X,c)=O. (18b) 

Notice  that  for  the  common  choice y(t)= l / t ,  (18a) im- 
plies that 

z ( t , X ) = -  1 '  2 Q(k;Z ,@(k ,F) )  
k = l  

and analogously  for k,(t,F,A, c). The  assumptions  then are 
as follows. 

C.1: The function Q(t ,x ,q)  is Lipschitz continuous in 

x 2 J  + lql - q21} for x, E 3 ( x , p )  for  some p = p ( x )  > 0 where 

C.2: The  matrix  functions A ( - )  and B ( . )  are Lipschitz 

C.3: z ( t , F )  as defined by (18a) converges for all FE D, 

C.4: kc(z, X,X,c) defined by (18b) converges to  a  finite 

x and q :  lQ(r,x,,cp,)- Q ( t , ~ 2 , q 2 ) 1 < ~ ~ l i ' l ( ~ , q , ~ , v ) { I x I -  

XED,;  QI,€%(QI,u) ,  c > o .  

continuous in DR. 

as t-+co. Denote  the limit b y f ( 3 .  

limit as t+cO for all ,YE D,, X < 1 and c < co. 
c.5: C ; " y ( t ) =  00. 
C.6: y(t)-+O as t-00. 
C.7: If the  matrices A and B in (2) do not  depend  on x, 

then Lipschitz continuity w.r.t to q is not  required in C.l 
and we may take c = 0 in C.4. That is, we may take CEO 
in C.1 and C.4. 

When these assumptions are used, no stochastic 
framework  has to  be introduced. The  statements  about the 
behavior of x(.) to  be given below are  true  as long  as e ( - )  
is such that C.3 and C.4 hold. If a  stochastic  framework is 
imposed and C.3, C.4 hold with probability  one, then the 
statements  about x(  e) will be  true w.p.1. This is, essen- 
tially, the  approach  taken  in [5] and [8], which also  con- 
tain  a  detailed  study of algorithms like (18) (esp. [8, ch. 
41). There several different sets of conditions implying 
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convergence of (18) are given. In fact,  conditions B imply 
that C.3 and C.4 hold w.p.1. I t  may in  this context be 
remarked that there is actually a tradeoff between condi- 
tion A.7= B.9 and conditions B.2 and B.7. The largest p 
for which B.2 and B.7 need to hold is  twice the p for 
which A.7 holds. Therefore, if y (  .) is subject  to ( 1  7), then 
only  the fourth moments of e,  Q. and YI-; have to be 
bounded. This is discussed further in [5] and [SIl and we 
shall not  pursue it here. 

remaining in DR and boundedness of 5 can be avoided. 
Corollary I :  Consider  the  algorithm (I ) ,  (2) subject  to 

assumptions A ,  B or C. Let D be a closed subset of D,  
(possibly E= D, = R “ )  such that (20) holds. Assume that 
there exists a twice differentiable  function V ( x )  in D,, 
such  that 

Then either 

V. MAIN THEOREMS x(r) -+D,= { x l x E  D, and V ’ ( x ) f ( x ) = O }  

The  functionf( .) defined in AS, B.6, or C.3 is the basic 
object of interest. As the heuristic discussion in Section I11 
indicated the differential equation 

- X ” ( ‘ T ) = f ( X ” ( T ) )  d 
dT 

will be relevant for  the  asymptotic  behavior of the algo- 
rithm (l), (2). The exact relationships between (19) and 
(l), (2) are given  in three theorems. The  first one  concerns 
convergence of (1). 

Theorem I :  Consider  the algorithm (1). (2) subject to 
assumptions A ,  B or C. Let 5 be a compact subset of D, 
such  that  the trajectories of (19) that  start in 5 remain in 
a closed subset D, of D, for T > 0. Assume that 

I )  there is a random  variable C such that 

w.p.1 as r 4 o 0  

or 

{ x ( r ) }  has a cluster point on the  boundary of DR. 0 
Our  second  theorem  concerns  the set of possible conver- 
gence points. I t  can  be used to prove failure of conver- 
gence by showing that the  “desired” or “true”  parameter 
value does not belong to this set. 

Theorem 2: Consider algorithm (1). (2) subject to 
assumptions A or B .  Suppose that x* E D ,  has the prop- 
erty  that 

Furthermore, suppose that 

.x( t )  E 6 and 1 q ( r ) l <  C infinitely often (i.o.)w.p.l Q(r ,x* ,@( t ,x* ) )  has a covariance  matrix 
bounded  from below by a strictly positive 

(20) definite  matrix, (24) 

2) the differential  equation (19) has an invariant set 0, and  that 

Then x(r )+D,  with probability one  as r + m .  0 EQ (I, x, @( r ,  x)) is continuously  differentia- 
Remarks: By (20) is meant  that there exists  with proba- ble with respect to x in a neighborhood of 

bility one a subsequence r k ,  p_ossibly depending on the x* and the derivatives converge uniformly 
realization a. such that . ‘ s ( fk )  E D and I q ( t k ) l <  c(w). k = 1, in this neighborhood  as t tends  to infinity. 
2.. . . , This  condition, which  we may call the ”bounded- 
ness condition:” is further discussed in Section VI. 

with domain of attraction DA 3 0. (21) 

Then 

An  invariant set of a differential equation is a set such 
that the trajectories remain in there for - x, < 7 < x .  The 
domain of attraction of an invariant set D, consists of and 
those points  from which the trajectories converge into D, 
as 7 tends  to infinity. I t  is obviously an open  set. See, e.g.. H ( x * ) =  ,f(x)l 
[9]. An  interesting special case is  when the invariant set D, 
is just a stationary  point of (19) say x*. with f ( s * ) = O .  

d 
x 

has all eigenvalues in the LHP 
X *  

(Rez GO). 0 (25b) 
Then the  theorem proves convergence of x ( t )  to x * .  By 
x( r)+ D, is meant  that The matrix H ( x * )  defines, of course, the linear differen- 

tial equation obtained  from (19)  by linearization around 

inf Ix(r) - xI-0. x*. Therefore this theorem essentially states  that  the algo- 
~ € 0 ,  rithm can converge  only to  stable  stationary points of the 

The phrase “w.p.l“ naturally does not apply in the case 
with assumptions C. In  order  to verify the  stability  condi- 
tion (21) analytically, usually the  Lyapunov theory has to 
be applied.  Theorem 1 can be given a formulation, which 
does not refer to  any differential equation,  but directly 

differential  equation (19). 
If f(x) = - (d/dx) ?‘(x), which might be the case if the 

algorithm is based on criterion-minimization,  then V ( x )  
can  be chosen as a Lyapunov  function  for  the  differential 
equation (19). Since ( d / d T ) V ( X ( T ) ) =  - lf(x(i>)12. we  see 

relates to a Lyapunov  function  associated with f(x). In  
that way also  the  assumption about the trajectories of (19) ‘P(A)=The probability of the event A .  
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that the  stationary  points of (19), together with the  point 
{a}. form an invariant set with global  domain of attrac- 
tion.  Moreover, if the  stationary  points  are  isolated,  it 
follows from  Theorem 2 that  only  stable  ones, i.e., local 
minima, are possible  convergence  points. It also follows 
from  Theorem 1 that the  estimates cannot oscillate be- 
tween different  minima.  Collecting all this we obtain a 
corollary  to  Theorems 1 and 2. 

Coroffaty 2: Suppose  that DR = R”, that f(x) = - 
( d / & ) V ( x )  and  that V ( x j  has  isolated  stationary  points. 
Assume that Icp(t)l< C i.0. w.p.1. Then, w.p.1, x ( r )  tends 
either to a local minimum of V ( x )  (i.e., V ” ( x )  positive 
semidefinite) or to infinity as t tends to infinity. 

Finally,  our  third  theorem  relates the trajectories of the 
differential  equation (19) to the  paths of the  algorithm (I ) ,  
(2). The result is formulated  as follows. Let x( t ) .  t =  
t w .  , be  generated by (l), (2). The values can  be plotted 
with the sample  numbers t as the abscissa. It is also 
possible to introduce  as  before  a  fictitious time T by 

I 

k =  1 

Suppose  that  the  estimates x([) are  plotted  against this 
time T .  See Fig.  l(a). Let X ~ ( T , T ~ ~ , , Y ( ~ ~ ) )  be the  solution of 
(19) with initial value .x{lo) at time T , ~ .  Also plot this 
solution in the same  diagram,  as in Fig. l(b). Let I be a 
set of integers. The probability that all points x ( t ) .  [ € I .  
simultaneously are within a  certain  distance E from the 
trajectory is estimated in the following theorem. 

Theorem 3: Consider  algorithm (l), (2) under  assump- 
tions A or B .  Assume thatf(.x) is continuously  differentia- 
ble. and  that (20) holds. Assume that the solutions to (19) 
with initial  conditions in D are  exponentially  stable. and 
let I be a set of integers, such  that inf I T ,  - T,I= So>O 
where i # j  and i.j€ I .  Then for  any p > 1 there exist 
constants K ,  eo and To that  depend  on p ,  5, and 6,. such 
that  for E < co and t o  > To. 

(27) 
where N = sup i; i E I, which may be m. 

Remark: In the proof of Theorem  3 it is assumed  that 
the  exponential  stability of the solution ~ ~ ( 7 . 7 ~ ~ ;  s ( r o ) )  is 
ensured  by  a  quadratic  Lyapunov  function for the (linear 
and time-varying) variational  equation around this solu- 
tion, cf., e.g.,  [IO]. 

Although  the proof of Theorem  3  provides an estimate 
of K from  given constants, we do not  intend to use (27) 
to  obtain  numerical  bounds for the  probability.  The  point 
of the theorem is that a  connection between the  differen- 
tial equation (19) and  the  algorithm (l), (2) is established. 
In  particular, we notice  that, due to A.7 there is a p such 
that the RHS of (27) becomes  arbitrarily  small when to 

increases, and E is fixed. This  means  that the estimates 
stay close to  the  corresponding  trajectory with higher and 
higher probability as ro increases.  Another way of inter- 

“1 
I 

I .  

‘ %  -7‘ 
@) 

Fig. 1. (a) and (b) To illustrate Theorem 3. 

preting (27) is that  the gain sequence y (  0 )  can be scaled so 
that x( e )  stays  arbitrarily close to x D (  .), with an arbitrary 
high degree of probability. 

A result that is related to  Theorem  3 in the  case 
A ( x ) = O  is given in [35]. Interesting  connections  between 
stochastic-approximation  type  algorithms and a  corre- 
sponding  differential  equation have also  recently  been 
made by Kushner [36]. [37], using  weak convergence  the- 
ory. 

The proof of Theorems 1, 2, and 3 are  long and techni- 
cal. They  are given in Appendices 1, 11, and 111, respec- 
tively. The idea of the  proofs of Theorems 1 and 3 follow 
the discussion  in Section 111. However,  a  considerable 
amount of technicalities are required  to rigorously justify 
the ‘’approximatively equal” signs. 

In  Appendix V extensions of the  theorems. e.g., to 
continuous time algorithms and  to cases when  the limit in 
A.5 or B.6 does  not exist are  also  commented upon. 

VI. THE BOUNDEDNESS CONDITION 

In this section we shall discuss  condition (20). The 
reason why i t  is required is twofold.  First, obviously x ( t )  
must be inside D, (with cp(t)  not too large to prevent an 
immediate jump) for the  differential  equation to  be valid 
at all, and also inside D, to get “caught”  by  a  trajectory 
converging  to 0,. Second. and  perhaps less obviously, 
even if D, = D, = R“ it may happen  that .x(f j  tends  to 
infinity. The reason for divergence is that if Q(t.x,q) 
increases  rapidly with 1 . ~ 1  it  may  happen that the  correc- 
tion y ( . t ) Q ( r . x ( r -  l),y(t)) always is too  large  even  though 
y ( . r )  tends to zero. Another  reason is that  the  variance of 
the “noise” Q ( t . . x . q ) - - f ( . ~ )  may increase so fast with 1x1 
that a “random walk” effect becomes predominately close 
to  infinity. 

From a  practical  point of view: the  question of 
bodndedness of the  estimates  may seem uninteresting, 
since no  implementation of ( I )  will  allow that x ( t )  tend5 
to infinity. It will  be kept  bounded  either by deliberate 
measures or due to. e.g., overflow in the  computer. Now 
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the  measures to keep x ( t )  in  a  bounded  area may  not be 
completely  arbitrary to  obtain  convergence. 

A feature  that  can be  used when D, = DA = R”. is to 
introduce  a  saturation  in Q ( *  : a ,  e )  so that I Q ( t ;  x ,q) /  < 
X .  This is further  discussed  in [7]. 

Another possibility of preventing x ( t )  from  tending  to 
infinity is to  project x ( t )  into a  bounded  area if Ix(t)l is 
too large or if x ( [ )  does  not  belong  to  a  desired  area, say 
D,. In fact, if A ( x )  is a  known  function of x ,  it is 
common, and  often even  necessary to test if x ( r )  E D, and 
project it into D, otherwise. We then  have an algorithm of 
the following type: 

~ ( x ( t -  i ) j q ( t -   I )+B(x(z -   I ) ) e ( t )  
if x ( t -  I ) € D ,  

d l ) =  

1 a value  in a given compact  subset of R” 
i f x ( f - l ) G D ,  

where D, 3 D,, and 

z i f z € D 1  
some  value  in D, if z tj! D,. 

It should be clear that D l ,  D,  cannot  be chosen  arbitr- 
arily. Loosely speaking,  the  trajectories of (19) that  start in 
D, must not leave  the area  Dl. Otherwise  there  may  be an 
undesired  cluster  point on the boundary of Dl.  This  may 
be formalized as follows. 

Theorem 4: Consider  the  algorithm (28), (29) subject  to 
assumptions A ,  B or C .  Let Dl  c D, be an open  bounded 
set  containing  the  compact set D,. Let o”= D,\ D, (Dl 
“minus” 0,). Assume that D , c  DA, with DA defined as in 
Theorem 1. Suppose  that  there exists a twice differentiable 
function U ( x )  2 0, defined in a  neighborhood of fi with 
properties 

sup I ; ’ ( x ) f ( x )  < 0. (30) 
.x E ij 

U ( x )  > C, for x 4 Dl 

U ( x ) < C z < C ,  forxED,.  (31) 

Then  Theorem 1 holds without  assumption (20). 
The proof of Theorem 4 is  given  in Appendix IV. 
Assumption (30) clearly makes I ; ( .  1 a  Lyapunov  func- 

tion in 6. while (31) formalizes the intuitive notion of 
trajectories  from D,  never  leaving D l .  We  may  remark 
that (30), (31) hold, e.g., if the trajectories of (19) do not 
intersect  the  boundary of Dl “outwards”  and D, is 
sufficiently close to D l .  

VII. How TO USE THE THEOREMS 

The intuitive  content of the theorems of Section V is 
that the  algorithm (l), (2), 

x ( t ) = x ( r -  l)+y(r)Q(r,x(t-l),,(r)j (32a) 

s51 

‘ ~ ( r ) = A ( x ( r - l ) ) q ( t - l ) + B ( x ( t - l ) ) e ( r )  (32b) 

can  be  studied  and  analyzed in terms of the  differential 
equation 

- - x ” ( T ) = f ( X D ( 7 ) ) ,  
d 
dr (33) 

where 

f ( x )  = lim EQ ( r . x , @ (  t , . ~ } ) .  (34) 

The precise statements  about  the  relations between (32) 
and (33) of Theorems 1-3 may be summarized in a 
somewhat looser language  as follows. 

a) x ( t )  can converge  only  to  stable  stationary  points of 
(33). 

b) If x ( - )  belongs to the  domain of attraction of a 
stable  stationary  point x* of (33) i.0. w.p.1, then x ( [ )  
converges w.p.1 to x* as t tends to infinity. 

c) The trajectories of (33) are “the  asymptotic  paths” of 
the  estimates x ( * ) ,  generated by (32). 

These  statements  are fairly attractive intuitively. and 
they  suggest certain unified techniques to analyze  recur- 
sive algorithms. We shall illustrate this below, but let us 
here  point  out  some  aspects. 

By the result a) the possible convergence  points of (32) 
may be determined  and  studied.  That  a possible conver- 
gence point  must  be  a  zero of (34) is fairly obvious  and i t  
ma.y be  derived  without  reference  to  any  differential  equa- 
tion.  However,  the  observation  that  among  these 
stationary  points  only  stable  ones  are  candidates  for being 
limit points of (32) is a  most  important  complement  and i t  
is probably less obvious  without  the  present  interpretation 
in terms of the  differential  equation.  Perhaps the main use 
of result a) is to  prove  failure of convergence. I t  may  be 
remarked that usually an algorithm is constructed so that 
the  desired limit indeed is a  stationary  point.  Conse- 
quently  the possible lack of convergence is then due  to the 
unstable  character of the  stationary  point. so it  is the 
complement (25b) that is the key result for proving diver- 
gence. 

Result b) is the result by  which convergence  can be 
proved. In  many cases it is not easy to find  a  proper 
Lyapunov  function  to  prove  global  stability of (33), and 
sometimes  the RHS of (33) is quite  complex. For  certain 
algorithms!  though, in particular  those  arising  from 
criteria-minimization,  it is possible to do this analytically. 
and some  examples will  be  given  below. 

While analytic  treatment of (33) may be difficult. i t  is 
always possible to solve it numerically when the dimen- 
sion of .Y is not  too  large.  In  that way insight can be 
gained into the global  stability  properties of the  differen- 
tial equation.  the  stationary  points  and  their  character. In  
view of result c) the trajectories  thus  obtained aTe also 
relevant for the asymptotic  behavior of the algorithm. 
Therefore,  numerical  solution of (33) is a  valuable  com- 
plement  to  simulation of (32). Due  to the time scaling (26) 
in the  differential  equation, this reveals more  rapidly the 
asymptotic  properties and the stationary  points of the 
algorithm. Since the estimates  change  more and more 

I-+= 
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slowly, due  to (4). it is seldom not difficult to decide  from 
simulations only whether the estimates have settled 
around a limit value or  are  just converging slowly. In 
addition, it might be difficult to tell from a simulation if a 
certain effect is an inherent  feature of the algorithm or 
just  depends  on  random influence. Numerical  solution of 
(33) may resolve such questions. 

The regularity conditions A ,  B,  or C are usually not 
very difficult  to verify as  demonstrated below. Notice in 
particular that  the observation gj may have a “dummy” 
character, since it  may have to  be  extended to fit into the 
assbmptions (2) and  A.l.  For example, if the sequence 
{ e ( . ) }  in (2)  is a stationary process with rational spectral 
power density, then it can be modeled as the output of a 
stable,  linear filter with independent  random variables as 
input.  Hence, by extending  the vector gj and adjoining this 
filter to (2). assumption A.l will hold. Even if this may 
lead  to a vector QI with a large dimension,  the complexity 
of the  algorithm and of the analysis is not affected. What 
matters is the  calculation of 

E Q ( t , Z G ( r , F ) )  

and this can often be  done  without explicit expressions for 
A ( . ) , B ( . ) , $ ( . ) ,  and even for e(., ., e ) .  

In the next sectioh we shall apply  the  method to a few 
examples and illustrate how the techniques of the items 
aboire may be used. 

VIII. EXXVPLES 

Example 1-Stochastic Approximation 

Consider  the  problem of solving 

E,Q(x,gj)=O 

Algorithms 

(35) 

for x .  Here “.Eq” dehotes the expectation with respect to 
tp, while the vector x is considered as a fixed parameter. 
Quantities Q ( x ,  ~ ( t ) ) ,  t = 1.2,. . . . are available for  any x>  
where tHe distribution of the random vector v( .) does not 
depend  on x .  Robbins-Monro [ I  11 proved  that  under 
certairl assumptions the scheme  (“the  Robbins-Monro 
scheme”) 

x ( t ) = X ( t - - I ) + Y ( t ) Q ( X ( t -  l ) ? V ( t ) )  (36) 

gives a sequence of estimates that converges to the (a) 
solution of (35) in the  mean square sense. Convergence 
w.p.1 of (36) has  then  been  studied in several papers, e.g., 
[12j-[,l4], and the ‘theorems of these studies do not differ 
very much  conceptually  from  Theorem 1. The functions 
used in the convergence theorems of,  e.g.,  [12] or [13] can 
be interpreted as Lyapunov functions for the differential 
equation (33) and condition (20) of Theorem 1 is ensured 
by fdrther  conditions on this function,  rather than by the 
mofe practically oriented  Theorem 4, see,  e.g.,  [12, condi- 
tion A], or [13, condition B, p. 1841. It  can also be 
remarked that the ‘condition 

E ( x -  x*)‘Q ( x , v )  <O (37) 

frequently used in Tsypkin’s work, see,  e.g.,  [15],  [16], 
clearly can  be understood as a stability  condition  for (33) 
with V ( x ) =  IIx - x*1I2 as the  Lyapunov  function.  Tsyp- 
kin’s condition 

is then a variant of the “boundedness  condition.” 
The convergence results thus obtained are. however, 

essentially restricted to the  case v( e )  being independent 
random variables ( A  ( .) = 0) and y ( . ) satisfying (1 7) which 
is quite restrictive for control and estimation  application. 
These  conditions are inherently tied to  the use of 
martingale theory in the  proofs and  cannot easily be 
dispensed with. Our  Theorem 1 when applied to (36)  is 
thus more  general in  that q( .) may be dependent (gener- 
ated  as white noise through a linear filter) and y( a )  has 
only to satisfy A.7. This is satisfied, e.g., for y ( t ) =  Ct-“ 
0 < a Q 1,  while  (17) admits  only 1 /2  < a Q 1. Notice that 
slowly decreasing gain sequences may be of interest in 
practice to achieve fast convergence of the sequence of 
estimates.  We must, however, admit  that we in return 
require  more regularity of Q and of e(  0 ) .  On  the  other 
hand, nonsmoothness of the involved functions is seldom 
a problem in applications, and we  believe that  our version 
of the convergence theorem is more widely applicable. 

In addition.  Theorems 2 and 3 are  important results for 
convergence analysis, and we are not  aware of similar 
previous results for the  Robbins-Monro scheme. 

In many  applications  it is of interest to minimize a 
function E,J(x,gj)= P ( x )  with respect to x .  If the deriva- 
tive of J with respect to x can be calculated,  the  stationary 
points of P ( x )  can  be  found  as solutions of 

THis  is a problem  that can  be solved using the 
Robbins-Monro scheme and then Corollary 2 of Theo- 
rems 1 and 2 is quite useful. 

If the derivative of J cannot be calculated it  seems 
natural  to replace it with some difference approximation. 
This was suggested by Kiefer and Wolfowitz [ 171 and their 
procedure  has  also been used for  various  control and 
estimation  problems.  Kushner  has in several recent papers 
discussed interesting  variants of this procedure. see e.g.. 
[IS]. [ 191. Our theorems are not directly applicable  to  the 
Kiefer-Wolfowitz scheme as they stand. since condition 
A.3 (or B.3)  is not valid. The reason is that  the  function Q 
in  this case increases to infinity with t .  For the case of 
additive noise to the function  to be minimized. however, it 
can readily be shown  that  Theorems 1-4 hold anyway. 
Details are given  in [ 5 ]  and [7]. 

Stochastic  approximation  algorithms  have  been  applied 
to a broad variety of problems in control  theory, see  e.g., 
Tsypkin [ 151, [ 161, Fu [20], and Saridis et al. [21]. The 
approach is known as “learning systems.” and in  this 
framework estimation and  identification problems, adap- 
tive control, supervised and unsupervised pattern recogni- 
tion. etc. can  be  treated. 

An approach  that is related to  stochastic  approximation 



LTUNG: RECURSIVE STOCHASTIC ALGORITHMS 559 

is suggested by Aizerman et al. [13]. Their  “Potential 
Function  Method”  can be applied  to  various  problems  in 
machine  learning. 

Therefore  the  Robbins-Monro  scheme  appears  in  vari- 
ous disguises in  many  control  and estimation  algorithms, 
and  consequently the  described  techniques  can  be  applied 
to these. A particular  example is given below. 0 

Example  2-An  Automatic  Classifier 

A classifer receives scalar valued signals ‘p(t)  which 
may  belong  to  either of two a  priori unknown classes A 
and B .  The classifier must  find a classification rule, i.e., a 
number c ( t )  such that V ( t )  is classified as A if q ( t )  < c ( t )  
and B otherwise. The  number c ( t )  can, e.g., be determined 
as follows: 

where 

I x”(t-l)+Y(f)[~;(f)-x”(f-l)], x‘“ ( t )  = if ‘p ( t )  is classified as A (39) 

x” ( t  - l),  otherwise. 

x B ( t )  is defined  analogously.  Clearly, x“ ( t )  is the  mean 
value of the  outcomes  classified  as A .  This scheme is 
discussed by Tsypkin [22] and  Braverman [23]. 

Let ‘p(t) have  the  distribution  shown in Fig. 2 consisting 
of two triangular  distributions. The probability of out- 
comes  in  the  left  triangle is X. We assume  that ‘p( .) is a 
sequence of independent  random  variables.  Clearly, it is 
desirable  that  the  classification  rule,  the  number c ( t ) ,  
should  converge  to  some value between - 1 and + 1. 
Introduce 

Then (39) can  be  written 

where 

and 

and Q E  analogously 

where  the values for ~ ( x A + x B ) - S < r p < ~ ( x A + x B ) + S  
are  such  that Q A  is a  continuously  differentiable  function 
of QI and x. Here S is some  small positive number. 

t‘ 

Fig. 2. Probability  density  function of the  random  variable  to  be 
classified by  the  automatic  classifier. 

Clearly,  the  algorithm (40) together with the  observa- 
tion equation 

rp( t )  = e ( t )  (41 1 
is a simple case of (32). Since v(*) = e ( . )  is bounded we 
may use assumptions A. Obviously A.l  to A.5 are satis- 
fied, and let us assume  that y ( - )  is such  that A.6-A.9 
hold.  (Here A.3 holds in virtue of our  somewhat  artificial 
modification of Q”: but this example will illustrate that  a 
heuristic use of the  present  convergence  results will reveal 
important features of the  algorithm.) 

E,Q ( x , q ) = f ( x )  is readily computed  as follows. For  a 
given x the  corresponding  classification  point is c ( x )  = (x”  
+ x E ) / 2 .  f” (x) is then  the  mean  value of the  distribution 
left of the  point c ( x ) ,  minus x A .  f E ( x )  is found  corre- 
spondingly. The algebraic expression for f ( x )  as a func- 
tion of x and h is lengthy and is omitted. 

We first  note that by construction,  the  estimates are 
confined  to  the  area 5: 3 > x E 2 X “  > - 3. Therefore  con- 
dition (20) of Theorem 1 is trivially satisfied.  Analytical 
treatment of the  differential  equation i = = f ( x )  is not  easy, 
but its trajectories  can easily be  determined by numerical 
solution and  they  are shown in Fig. 3 for  two  choices of A. 
For the  case h=O.5, [Fig. 3(a)] there is convincing evi- 
dence  that  the  point x*  =( -2,2) is a stable  stationary 
point with global  domain of attraction.  Therefore,  for 
h = 0.5 it follows from  Theorem 1 that x ( f ) + x *  w.p.1 as 
f+m, which  gives a correct  classification  rule c* =O. The 
case  A=0.99  [Fig.  3(b)]  corresponds to a  common  situa- 
tion  where  errors that  occur  rather  seldom (1 percent), 
“outliers,”  shall be detected. In this case  there are two 
stable  stationary  points of the  differential  equation, x * =  
( - 2 ,2 )  and x* *  = ( - 2.3, - 1.4). There is obviously  a  non- 
zero  probability that x ( t )  belongs to  the domain of attrac- 
tion of x**  i.0. Therefore  Theorem 1 shows that for 
h = 0.99, and for  any  starting value x(0) there is a  nonzero 
probability  (that  depends  on x(0)) that x(r)-+x** as t+ 
00. This gives an  asymptotic classification  rule c** = - 1.8, 
that classifies 39 percent of the  “correct values” as out- 
liers. For this case  simulations of the classifier are shown 
in  Fig. 4. In fact,  the  simulation  leading  to  the  undesired 
value c** appeared  only  after several (257) attempts  and 
from  simulations  only it might have  been  tempting  to 
conclude  general  convergence  to c*. 

In this example  it is cumbersome  to  find  a  suitable 
Lyapunov  function  for  the  stability  problem.  However, as 
seen in Fig. 3  numerical  solution of the  differential  equa- 
tion yields sufficient insight into the  stability  properties. 
Such  detailed  information  can  naturally be  obtained  only 
if the  dimensionality of the  problem is small. 
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/ 1 2 3 3  , 

I' 

I 

(b) 

Fig. 3. Trajectories for the ODE that is associated with self-learning 
classifier (40). (a) X = 0.5. (b) X = 0.99. 

Example  3-Equation Error Identification Methodrs 

A common way of modeling  dynamic systems is as  a 
vector  difference  equation (VDE), 

y ( t ) + A 1 y ( t - l ) + - . .  + A g ( t - n )  

= B , u ( t - l ) + . - .  + B , u ( t - n ) ,  (42) 

where y ( t )  and u( t )  are  column  vectors and Ai and B, are 
matrices of appropriate  dimensions.  Introduce 

e = ( A , - . A , , B , . - B , )  T 

# ( t ) = ( - y ( r - l ) T - - -   - y ( t - n )  T u ( t - l ) - . . u ( t - n n , ' )  . 
(43 1 

Y ( 4  = @ = w .  (44) 

T 

Then (42) can be written 

We may  remark  that (44) also  covers several other inter- 
esting  estimation  problems,  not necessarily related to sys- 
tem  identification. 

Usually, the true system cannot be described exactly in 
the  form (44). Suppose  that it can  be  described  as 

r(4 = % v ( f )  + U ( t )  (45) 

where c( -) is a  disturbance  that  can  be modeled  as 

U ( t ) = D ( q - ' ) e l ( r ) .  (46) 

Here D ( 4 - l )  is a  matrix with rational  functions of the 
backward  shift  operator q-' as entries and e , ( - )  is a 
stationary  sequence of independent  random  vectors with 
finite  moments.  It is assumed  that  the  denominator poly- 
nomials  in D ( z )  (z replacing q - ' )  have all roots  outside 

4' 
Fig. 4. Simulations of the  classifier (40) for the case X=O.99. 

the  unit  circle, i.e., D ( q - ' )  is an exponentially  stable 
filter. 

Even if an exact  description of the system is impossible, 
a 8 can  be  determined  that gives a  model (44) which 
describes the  recorded  data as well as possible. Often 8 is 
determined by minimizing a criterion  based  on  the  equa- 
tion  error 

l ly(r)-~7#(~)l12. (47) 

Several algorithms  based  on  the  idea of somehow mini- 
mizing (47) have been suggested in  the  literature, see e.g., 
[24] and also [25] for a  comprehensive  treatment.  The 
probably best known  method of this type is the  least 
squares  algorithms, see,  e.g.,  [24]. Then  the  sum 

N 

2 IIY(t)-oT+(f)l12 (48) 
I = I  

is minimized w.r.t 8 to obtain the  estimate B ( N )  based  on 
measurement up to time N .  An important  and well known 
feature of this  method is that the  sequence of estimates 
can  be  obtained recursively as 

8 ( r ) = B ( t - l ) + y ( r ) C J C ( t ) [ y ( t ) - B ( r -  l)T+(r)~T (49a) 

:7L'(t)= R - ' ( r -  l)$(t) 

/ [ l + Y ( r ) ( ~ ( t ) = R - l ( t - l ) + ( t ) - l } ]  

= R - ' ( t ) + ( t )  (49b) 

R ( r ) = R ( t - l ) + y ( r ) [ + ( r ) + ( r ) T - - R ( t - l ) ]  (49c) 

(usually (49c) is written  in terms of R -I([) ,  which  makes 
it  of "Riccati type"). For the  minimization of (48) y ( t )  has 
to be taken  as l / t .  Other  sequences y ( - )  correspond  to 
criteria  where  old  measurements are discounted, which 
often is relevant  in  practice. 

Let us assume  that  the  input  to the process is de- 
termined  as 

u ( t ) = F ( q - ' ) e 2 ( t ) + H ( q - ' ; 8 ( t -  l))y(t) (50) 

where F ( 4 - I )  and H ( q - ' , 8 )  are matrices with rational 
functions of the  backward  shift  operator q-'  as  entries. 
Let e2( a )  be  a  stationary  sequence of random vectors with 
finite  moments,  that  are  mutually  independent  and  also 
independent of e l ( - ) .  Moreover, H ( q - ' , 8 )  is a causal 
operator  that allows output  feedback  terms in the input. 
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This  feedback law may depend on the  current  parameter 
estimate as is further discussed in Example 5. 

It is clear that the  rational  filters in (46) and (50) can be 
represented  in  a  state  space  form, 

z , ( t + I ) = A , z , ( t ) + B , e , ( t + l ) ;  c ( t ) = ( I  O.-.O)z,(t) 

(51) 

zu( t+ 1 ) = A u ( 8 ( t ) ) z , ( t ) + z , + B , , e , ( t +  I)+B,y(t+ 1); 

u( t )= (Z  0. * O)z,(t), (52) 

where z,( -) and zu( -) are  the corresponding  state vectors 
of appropriate dimensions. We  may now form the "ob- 
servation vector," 

which obeys 

where the  matrix A , ( . )  is formed  from (454,  (43), (51). (52) 
in an obvious  manner.  Its eigenvalues are  the poles of the 
filters D ( q - ' ) ,  F ( q - ' )  and of the closed loop system 
which is obtained  for (42) with a  constant  feedback (50) 
using 8 ( t  - 1). There  are also a  number of eigenvalues in 
the origin, arising  from the shifting of the vector $(t). 
Notice  that A, (8 )  depends on 8 only since the  feedback 
filter H ( q - ' ; 8 )  does. Let us take 

= (8 (t)"colTR ( t ) ) T .  (55) 

Then (49) takes the form 

x ( t ) = x ( t -  I ) + y ( t ) Q ( t ; x ( t -  l ) ; ~ ( t ) )  (56) 

with an  obvious  definition of Q ( f ;  x , q )  from (49). There- 
fore  the  algorithm (49) together with (54)  is of the general 
form (32). Let us check if assumptions B of Section IV are 
satisfied. Conditions  B.l  and B.2 are satisfied due  to  our 
assumptions. By straightforward  calculations it is readily 
shown  that B.3 is satisfied in the  open  area D, = { x l R  > 
0}, [cf.. (55)]  e.g., with 

~ ' ( x , c p , ~ , G ) = ( 1 8 1 + ~ ) ( l + 1 c p 1 + U ) 2 / ( 1 - P I ~ - ' I ~  (57) 

for p=p(x)  < 1/JR -'I. Then B.4 will be  satisfied with 

~ C ~ ( X , F J , P , C , W ) = ( ~ ~ I + P ) ( ~ ~ ~ ~ + ~ W + U ) / ( ~ - ~ I R - ' ~ ) * .  

( 5 8 )  

Condition B.5 is satisfied if the  matrix H ( q - ' ;  8) is 
Lipschitz continuous  in 8. For condition B.6 we define 

Since e ; ( . )  are  stationary, ijT(t,F) will approach  stationarity 
exponentially,  for  all x, such that 0 makes  the closed-loop 
system stable.  Therefore  the limits 

are well defined where u(t,F) and IC/(t,F) are the corre- 
sponding  parts of F( t ,  3, and 

so B.6 is satisfied. Moreover,  from (57) and (58) it follows 
that B.7 holds, since all moments of @ ( t . x )  and c ( t ,X ,c )  
exist. Conditions B.8-B.11 about the  sequence y (  e )  are 
assumed to be satisfied. 

The conclusion  therefore is that  the differential  equa- 
tion 

- R ( T ) = G ( ~ ( T ) ) - R ( ~ )  d dr (61b) 

can be associated with the  algorithm (49). In the  remain- 
ing  part of this example, we shall assume  that  the feed- 
back matrix H does not depend on B (i.e., therc is no 
adaptive feedback), that  the matrix F ( z )  has full rank a.e. 
z and  that e;( -) are full rank processes. (Adaptive feed- 
back is further discussed in Example 5.) This  means that 
the  matrix A , ( - )  does  not  depend  on 8, @(t,F) = cp(t), and 
u(t,.F) =y( t ) ,  so the values in  (59) are directly defined in 
terms of inputkoutput covariances. In particular,  the 
matrix G is independent of 8; G ( 8 ) =   G .  

Introduce 

r =  Ecp(t)v(ty- (62) 

and we have, using (459, 

j - ( e ) =  G-(eo-e )+r .  (63) 

Hence, (61) can  be  rewritten as 

- 8 ( r ) = R - ' ( r ) G [ ( B O + G - ' r ) - 8 ( ~ ) ]  d (64a) 
dr 

-R(7)=G-R(r ) .  d 
dr ( a b )  

With 

B ( ~ ) = B ( ~ ) - ( o + + G - $ - )  
and 
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we have { h(t)} .  Take in this  example  the  observation  to  be 

d v ( 6  (T),R(T))=  -26'G8+6'(G-R(~))6 
dr 

= - 6 ' ( r ) ( G + R ( ~ ) ) 8  (.)GO (65) 
rp(t)= ( q ( t )  ) 

col A( t )  

and in (32b) A ( x )  0, B ( x )  I .  The estimate is as  before 

and X, can this time be  taken  as 
So that is a LYaPunov function for (64) Or (61) that given  by (55). The  condition C.1 has  already been verified 
assures that the  stationary  point 

has  a  domain of attraction  equal  to DR. Therefore  condi- 
tion (21) of Theorem 1 is satisfied with DA = D R .  To check 
condition (20) we note  first that the  assumption  on  full 
rank  and finite  moments of ei( -) implies that CZ > G > 61 
for  some 6 > 0, C< co. Therefore  also ( S / 2 ) 1 <  R ( t )  < 
2CI  and  Jq(t)l<2C i.0.  w.p.1. We also note  that (49a) can 
for  large 8 ( f  - 1) be written 

Condition C.2 is trivially satisfied. 
defined  by  (1 8a) is given  by 

[q(s)-A(s)G 
s = l  

z(t , .)= 

e ( t ) = ( z -  R (t>+qt)+(t)')e(t-  1) 
col-1 [A(s)-R] 

s=l 
L 

The  variable z( t ,$  

, 

I 

which shows that e ( t )  can, w.p.1, not  tend  to  infinity. 
Hence x ( r )  belongs to a  compact  subset of D ,  i.0. w.p.1 
and  condition (20) is satisfied.  Theorem 1 now implies 
that - s =  I S'l - 

e(t)+O* w.p.1  as t +m. 

In particular, we see that the  least  squares  estimate is 
consistent  only if r =  0, which  essentially is the  same  as 
requiring that u(  .) is a  sequence of uncorrelated  random 
variables, and  that the current u ( t )  is uncorrelated with 
future u(s), s > t. .=( "). 

Other  variants of equation  error  methods  are  treated col R 

where 

analogously. 

for the  case y ( t )  = l / t ,  but  one  reason for this example is that 
that the  analysis  extends into less trivial problems. 0 

Example &Equation Error Metho&-Assumptions C s = l  

These facts  are, of course, well known, [24], [25], at least if the sequences and are 

- c q(s1-4 (72a) 
1 '  

The model (44) and  the criterion (48) appear in several 
contexts, like curve  fitting, etc., where a stochastic 
framework  often is not  imposed.  Let y ( t )  = l/r  and de- 
note 

and 

(67a) 
then C.3 holds with 

R ( t ) = R ( t - I ) + - [ R ( t ) - R ( t - l ) ] .  1 
I - x IA(s)l converges 1 '  

(74) 
We  shall in this example  illustrate how assumptions C can 
be  applied  to  the  algorithm (68) to  infer  convergence  which is implied by (72b) if A(s)= +(s)+(s)'. The 
directly  from  the  properties of the  sequences  {q(t)}  and  boundedness  condition of Theorem 1 has  been verified in 

- s=l 
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Example  3. The differential  equation  methods, like Landau’s scheme [28] etc. Since a compan- 
ion  paper [29]  is devoted to the  last two schemes we shall 

- 0 ( 7 ) = R - ’ ( r ) [ f - A @ ( ~ ) ]  d not  go  into  any  detail here. Further analysis of some 
dr (75a) recursive identification schemes using the present ap- 

d 
d7 (75b)  It was remarked  above  that  the structure (32) can be 

understood  to be  patterned  after  adaptive control of linear 
is as shown in Example 3 globally asymptotically stable systems. We shall therefore  conclude with such an exam- 
with stationary  point ple. 

- preach can also be  found in [ 11, [30], and  [3 11. 
- R ( ~ ) = i l -   R ( T )  

- 
@ * = A - ’ -  rl (76) Example  5-Self-Tuning  Regulators 

if is positive definite.  Hence  Theorem  1 implies that We shall in this example discuss an application  to  the 
@ ( I )  given by (68) converges to O* defined in  (76) for  any self-tuning regulator, described in  [32]:  see also [2] and [4]. 
sequences {A(s)} and { q ( s ) }  such  that (72) holds with a This regulator is based on least squares  identification, 
positive definite x. This is  by no means surprising since (49). and the output feedback law  is determined  from  the 
(68) in fact  only is a way of recursively writing current parameter estimates. Usually the  feedback law is 

chosen  to be a minimum  variance  regulator, [32], but here 

perhaps in most cases F is zero. 
In  this case the matrix A, (B)  in (54) does depend  on 8 

since the feedback term does. However. the point  now is 
using the matrix inversion lemma. However. it illustrates that, in contrast  to conventional  analysis of the least 
that  our  method of analysis does not  bring in “unneces- squares  algorithm, most of what was said in Example 3 
SarY” assumptions, even thou&  it is concerned with a still holds. Up  to (61) the  development was quite  general. 
more general algorithm.  This differential equation is  valid also in the case of 

Moreover. for a stochastic  approximation version of  adaptive  feedback.  although G and r now are  functions of 
(681, 6 .  I f  t.( .) is a sequence of independent  random variables, 

- 1  it could be a general linear regulator as  in (50), where 
O ( t )  = x h(s) i: q ( s )  [ s:, 1 s=l 

1 then r=O and (64) and (65) hold.  (Equation (65) does not 
@ ( I ) =  @ ( t -  I )+ 7 [ T ( t ) - - ; j ( r ) @ ( f -  I)] (77) hold if r#O depends on 0.) We therefore still find that  the 

points defined by 
we have exactly the  same convergence result under the 
condition (72), since the  associated differential equation D , = { @ l f ( ~ ) = O }  
then is 

In this case no explicit expression for O ( t )  is available  to 
infer this result directly. In fact. the algorithm (77) has 
been studied in [26],  [27] using fairly elaborate methods, 
since it was found  that the usual stochastic  approximation 
convergence results could not be applied due  to  the corre- 
lation in the  sequences { h ( s ) }  and { ~ ( s ) } .  

These  four examples have all been for the case where 
A ( e )  in (32b) actually  does  not  depend on x .  The conver- 
gence part in this case can,  at least under  further  assump- 
tions: not  seldom be treated by more  conventional statisti- 
cal methods. When A ( e )  does depend  on x, conventional 
approaches become much more difficult, and in fact. also 
in the proof of Theorem 1, a major burden is  to keep 
control over the  coupled stability questions in (32a) and 
(32b). The inclusion of x-dependent A-matrices becomes 
necessary for  more elaborate recursive identification 
methods in which the observed data  are processed 
through filters that  are formed  from  current  parameter 
estimates. This is the case, e.g., for  the  extended  Kalman 
filter, the extended least squares method,  output error 

form an invariant set  with global domain of attraction. 
Clearly OOE Dr. and whether D, contains more  points 
depends  on the choice of feedback law and model order. 
There is a further complication before Theorem 1 can be 
applied. In this case the area D,  is unknown. Le., the area 
of such 8 that inserted in a constant feedback law  (50) 
makes the closed-loop system stable (A, (B)  in (54) has all 
eigenvalues inside the  unit circle). Therefore we cannot 
guarantee stability by projecting 0 into D,. Hence condi- 
tion (20) of Theorem 1 has  to be  verified  by other  consid- 
erations, e.g.. by showing that the overall system has a 
certain stability property as in  [33]. But  when  this  is 
shown. Theorem 1 proves convergence of 0 ( r )  into D, 
w.p. 1. Let us repeat that this holds for  the case of arbi- 
trary feedback law, but  under the assumption  that c ( - )  is 
white noise. For general noise c ( .  ) the convergence analy- 
sis  is more  cumbersome, but i t  can  be performed in 
certain special cases. [2].  [4],  [29]. We refer also to  these 
papers for more details on how Theorems 1, 2, and 3 can 
be used  in the analysis of self-tuning regulators. Numeri- 
cal solution of the associated differential  equation  has 
turned out  to be a valuable tool here, and it has been used 
in [34] as well as in the references above. 
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IX. CONCLUSIONS 

Recursive algorithms like (1) have  been  analyzed in 
various contexts. However, we would like to stress again 
that when cp in ( I )  is generated as  in (2). the analysis 
becomes more difficult. The reason is that (1) no longer is 
recursive in x for analysis purposes: the whole history of 
x(-)  enters in each step of (1). Moreover,  the  coupled 
stability problems between (1) and ( 2 )  are  intricate. But 
the  structure (l), (2) is nonetheless common in estimation 
and control problems: a typical example is adaptive  con- 
trol of linear  stochastic systems. The analysis of this case 
is also  known to  be usually  very difficult. 

With  the  present  approach we are able  to give a general 
treatment of (1). (2) under assumptions that  do  not appear 
to  be restrictive. The examples indicate that  the theorems 
may  be  applied  to  rather diverse problems, and perhaps 
the technique  also  may serve as a basis for a unified 
approach  to the analysis of adaptive  controllers.  In  addi- 
tion,  an extension is obtained for the conventional  conver- 
gence results in the simple case where A (  .) in (2) is 
independent of x .  We may remark  that  the analysis is 
restricted to  the  asymptotic  behavior, convergence, possi- 
ble convergence points etc. of the  algorithm.  Two related 
algorithms which are associated with the  same differential 
equation  may  differ noticably in transient behavior and 
convergence rate. 

In the described theory. we would like to stress the 
intuitive content of the  theorems and the methodology of 
analysis as outlined in Section VII. It is no  doubt im- 
portant  to appreciate the exact formulations of the theo- 
rems and to know  the exact conditions under which they 
are valid. But it is perhaps equally rewarding to use the 
properly  defined differential equation as a general instru- 
ment  for analysis in a more heuristic fashion. This may be 
exemplified in Theorem 3, which has a fairly technical 
formulation and is probably  more  valuable  as a “moral 
support” for studying the trajectories of the differential 
equation, than in its literal sense. 

APPENDICES 

The proofs of Theorems 1 4  are given  in Appendices 
I-IV. They are slightly compressed versions of the proofs 
in [7]. in that some calculations of technical nature are 
omitted. Proofs for a simple special case of the algorithm 
(I ) ,  (2) are also given in [6]. These are naturally less 
technical than the present ones. and reveal perhaps  more 
clearly the  underlying ideas. The basic path of the proofs 
of Theorems 1 and 3 follows the heuristic outline of 
Section 111. 

Some notational  conventions in the proofs  should be 
noted. “C”  will denote  any constant.  that need not be the 
same in different parts of the  proof. Important  dependen- 
cies of the  constants will be given as arguments, while 
indexed constants are “global” throughout the proof. 
‘‘$ (X,p)” denotes  as  before an open p-neighborhood of X. 
Realizations in the sample  space D will be denoted by 

“o.” The  abbreviation “io.”  denotes  as before “infinitely 
often.” 

APPENDIX I 
PROOF OF THEOREM 1 

Outline 

In order  to prove Theorem 1, we shall first show that 
the  estimates provided by  the  algorithm locally and 
asymptotically follow the trajectories of the  associated 
differential  equation.  This will be done in Lemma 1 under 
assumptions C and the proof of this follows the intuitive 
outline of Section 111. After that  the local behavior of the 
algorithm is thus established. this is  used to prove that all 
cluster points of the  sequence { x ( t ) }  must belong to D,. 
This is done by means of a Lyapunov  function,  the 
existence of which  is inferred  from  the stability condition 
(21). A possible clusterpoint  outside the set D, would yield 
a decreasing value of the  Lyapunov  function  along  the 
corresponding trajectory of the differential equation. 
Since Lemma 1 proves that we  follow  this trajectory 
asymptotically, a contradiction is obtained.  The value of 
the  Lyapunov  function is decreasing  outside D, and it  is 
not possible to  return a given point  outside D, infinitely 
often. This is the intuitive path of proof. The many 
technicalities tend  to  obscure the simple idea. and the 
proof  will be structured as much as possible to enhance 
the basic ideas. 

Finally it is proved in Lemma 2 that assumptions A or 
B imply assumptions C for the case y ( n ) =  I / n .  An  out- 
line of the general proof  will also be given. but the details 
of this are omitted, and the  reader is referred to [7] for 
them. 

Lemma 1: Consider  the  algorithm (1). ( 2 )  under 
assumptions C. Let Y€ D, and define the number 
n ? ( n . . h )  such that 

m ( n . A T )  x y ( t ) + A ~  a s n + x .  (1.1) 
n 

Assume that 

. Y ( n ) € t % ( ? r * p )  (I .2a) 

where 

p = p (  T) is sufficiently small (I.2b) 

and  that 

19;(n)l c,. (1-3) 

Then. there exists a value - 1 ~ ~ =  -1-r0( .U,p) and a number 
:Vo = ;Vo( .F, p )  such that  for AT <  AT^ and n > h r o  

. ~ ( m ( n . ~ ~ ) ) = . ~ ( n ) + ~ 7 f ( X j + q l ( n . m . . U ) + q 2 ( n . m . X )  

(1.4) 
where m = m(n ,   AT)  and 

q,(n,m..%)+O as n - x  (1.5) 
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and 

)q,(n,m,x)JQhr.C,Jx(n)-XJ+C2hr2 (1.6) 

where C ,  and C, depend on x and p,.but not  on n > No or 
Ar. 

Proqf of Lemma 1: The  proof is structured into 4 
steps. In Step 1 an explicit expression for x ( j )  where 

is derived.  This expression shows that if certain terms are 
small, then x ( j )  is close to what would be obtained if 
Q ( t , x ( t -  l), cp(t)) is replaced by Q ( t , F , + ( t , q )  [with 
@(t ,F)  defined by (15)]. As a first  step  to  show that these 
terms  indeed  are  small an expression for cp(t) - @( t , q  is 
derived  in Step 2 .  This expression is used in Step 3 to 
prove  that  assumptions C.3 and C.4 imply that the terms 
are small. A complication so far  has been that in order  to 
prove these things it must be assumed  that x ( s )  remains  in 
a  small  neighborhood of X for n < s Q j .  In Step 4 it is 
proved  that x ( $ )  actually will remain  in this neighborhood 
up to s = m ( n , A ~ )  if AT is chosen sufficiently small (and 
dependent only on Y) and n sufficiently large.  This will 
conclude  the  proof. 

Introduce j = j (  n)  such that 

n Q j < m(n,AT) (1.8) 

P = P ( 4  (1.12) 
where X($ is defined by (14). 

The idea obviously is that since the  matrix A ( $  is 
exponentially  stable,  exponential stability uf the time- 
varying  difference  equation (2) given by A ( x ( k ) )  will be 
guaranteed if x ( k )  varies in a sufficiently small neighbor- 
hood of X. The  formal proof consists of straightforward 
calculations  given in [7], but  omitted here. The 
"sufficiently small" p mentioned  in (1.2b) refers to  the  fact 
that p should  be so small that (1.12) implies (1.11). 

From (2) it follows that 

cp( t )= [  k = n  iI A ( x ( k ) ) l e ( n ) +  J = I I  i [ k = j  I!I A ( - W ] B ( A e ( A  

(1.13) 

which  together with (1.1 1) and (1.3) implies that 

if (1.12) holds. Since the variable 

obeys 

and + ( t + l ) = A ( x ) + ( r ) + [ A ( X ( t ) ) - A ( x ) ] p ( t )  

x ( k ) E % ( F , 2 p ) ,  k = n , n + l ; . . , j - l .  (1.9) 
+ [ B ( x ( t ) ) - B ( x ) ] e ( t + l )  (1.15) 

Step 1-An Expression for xli,  

is obtained: 
Directly  from  the  algorithm (1) the following expression we have that 

j 
+ ( t ) = A ( Z ) ' - " + ( n )  

x ( i ) = x ( n ) +  2 Y ( s ) Q ( s : x ( s - ~ ) , ~ ~ ( s ) )  z-  1 

j j = n  

s = n + l  + 2 A ( x r S [  { ' 4 ( W ) - w ) } m  

n + l  + { B ( X ( j ) ) - B ( x ) } e ( j + l ) ] .  (1.16) 
= x ( n ) +  x Y(s)Q(s;.F,@(s;X)) 

j 

+ 2 Y ( ~ ) [ Q ( ~ , x ( s - ~ ) , ~ ~ ( s ) ) - Q ( ( s ; X , + ( S ; X ) ) ]  

(1.10) 
n +  1 If KA and KB denote  the Lipschitz constants of A ( . )  and 

B (  e), respectively (see assumption C.2), then  from (1.16) 
and (14) it follows that 

where @(s; Y) is defined by (15). End  Step 1. 

"small," and in order to do this we first consider q ( s ) -  
The first goal is to show that the last term  in (1.10) is I + ( t ) l <  C.X(F) ' -"{Jq(n)l+I~(n,x) l}  

Gqs; 4. 
Step 2-An Estimate for 1q(r)- $(t,.F)I 

We claim  that 

(1.17) 

2 c i ; (x) ' -"  (1.11) 
k = n  Clearly, with t '(n,h,c) defined by (16), 
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Now,  inserting (1.14) and (1.18) in (1.17)  gives We thus  find that 

I / - I  s = n  

j = n  k = n  

j = n  I 

Sum first over j  in the  double  sum  and  introduce c' and X where 
such  that 

IkXk+Xkl < c'Xk X <  1. 

Then { 1 + c(s,X,c)} (1.26) 

lq(t)-lj5(f,x)\ <h(x)r-nu(n.h(x) .c)  and 

+ max Ix(;)-.-I.o(t.A,c). (1.20) q 4 ( n , j ) =  n < s ~ j - l  max { ~1(X,@(s;X).2p,u(s,X,c)) 
n < j < r - l  

i 
In  particular, * c ( s , ~ , c ) . ~ ( s ) } .  2 h(x)'-". (1.27) 

s = n  

A(x)'-"u(n,X(x),c) < c(t,X(F),c) Step 3 a - m a ~ , ~ , ~ ~ ( ~ , ~ . , ) l R ~ ( n , j ) l j O  as n + x  

and therefore  also Let the  maximum  be  attained forj=j*(n). 
Solving (1 8a) we obtain 

Iq)(t)- 97(t,.qI f u ( t , L c )  (1.21) j * ( n )  

where can  be  taken  as  (3+h(x))/4  and c is a  constant z ( j * ( n ) ~ X ) = Z ( n ~ x ) +  2 y ( k )  
that is obtained  from cs;, C in (14), c in (I.ll), c' in (1.19), 
KA,  K,, and max IB ( x ) l ( x  E 3 (2,~)). However, since a [  Q(k ,x , cF(k ,X) ) - r ( k - l , x ) ] .  
assumption C.4 shall hold  for  any finite c, there is no 
point in tracing  the expression for c through  the calcula- Now, let tend to infinity. BY assumption c .3  
tions. 

We summarize this step  as follows: Choose 2p in (1.9) 
lim z ( n , F ) =  lim z ( j * ( n ) , X ) = f ( X )  

so small that (1.12) implies (1.1 1) for this p. Then (1.20) and hence 
and (1.21) hold  for n < t < j ,  where j is defined by ( 1 . 0  
(1.9). J Y n )  

depend  on x, then 9 ; ( t ) = @ ( t , T )  and we may take c(t.h,c) 
E O  in all calculations to come.  This justifies the remark j * ( n )  

C.7. End  Step 2. = lim x y ( k ) [ Q ( k . - G . ~ ( k . ~ ) ) - f ( ~ ) ]  

From assumption C.l  and (1.21) it follows that = lim Rl(n.J*(n))=O 

IQ(s,x(s- ~ ) ,T ( J ) ) -  Q(s.F,@(s:x))l End  Step  3a. 

k = n + l  

n -sx  n-+m 

Note  that in case  the  matrices A and E in (2) do not ,ll% 2 y ( k ) [ Q ( k , Y , F ( k . x ) ) - r ( k - l . x ) ]  
k = n + l  

We can now return  to  the expression (1.10) for x ( j ) .  
n - x  k = n + l  

n - x  

Q ~1(x,(F(s,x),2p,o(s,h,c)) Step 36: 
There exists an N ,  such that 

.[Ix(s-l)-xI+19)(s)--(s;x)I] 

Q max I ~ ( k ) - X I . ~ ~ ( x , 9 ) ( s , x ) , 2 p , c ( s , X , c ) j  
1q3(nJ(n))l  Q 2A7-L" for n >  N , ,  

where k, is the limit of k,(t,x,A,c) defined in C.4. This n < k < s - l  

. {  l+v (x ,h , c ) }+~ , (x ,q j ( s , x ) ,2p ,0 ( s ,h , c ) )  step is completely analogous  to  Step 3a. using the defini- 

(I  .22) tion (1 8b) and assumption C.4. 
End  Step 3b. 

where the  last  inequality follows from (1.20). Step 3c-q4 (n, j(n)) + 0 as n + co 
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From (18b) It now follows from (1.33)-(1.35) that 

y(s) .u(s ,h ,c) .Xl(x,~(s .x) ,2p, t , (s ,h ,c))   Ix( j ) -XI<2p 

= k~ - ko(s  - + Y (s - )- and hence that (1.30) and (1.3 1) hold. End Step 4. 
The RHS tends  to  zero  according to C.4 and C.6 and  the From (1.33)-(1.35) it  also follows that 

- 

claim is proved.  End  Step 3c. 
Expressions (1.23F(I.27) together with Step  3 would l x ( j ) - - F l  Q lf(X)lA~+  q5(n,m(n,A~)) 

complete  the proof of Lemma 1,  if j (n)  were equal  to 
m(n,AT), that is if x ( k )  remains in % (F,2p) for all k up  to 
m ( n , A ~ ) .  This is proven  in  the  final step. 
Step 4 

Since the RHS does  not  depend onj ,  this inequality  holds 
for all n < j < m(n ,A~)  for sufficiently small AT and large 

There exists a ATo= A~~(2c .p)  and a N o =  N o ( X , p )  such - 
that  for AT <  AT^ and n > No, the expression (1.9)  will hold 
fo r j=m(n ,A~) .  

I I  . 
Therefore,  from (1.23 j(1.27)  and (1.36) 

We shall show that (1.28) and (1.29) imply that  also 

x(j)E93(Fx,2p) (1.39) 

+2LA~+I f (X) l jb7 -  x y ( k )  
m 

k =  n 

and 
for sufficiently large n and small AT. By induction it  then 
follows that  Iq2(n,m,Y)l<2k,A7[ I f ( x ) i . A ~ + 4 p A ~ . k ; , + I x ( n ) - - l ]  

x(k)E’3(2.2p) k = n ; - . , m ( n , A ~ ) .  (1.31)  (1.39) 

We have 

I X ( j ) - X I g I x ( j ) - x ( n ) ( + ( x ( n ) - - l  
for AT < &r0 and n > No. 

The expression (1.37) with (1.38) and (1.39)  is the asser- 
tion of the lemma since q,(n,m(n,h) i?)  lends to zero 

J 

glf(x)l. 2 r(s)+IR1 (~?J)l+lR,(nJ)l+P (1.32) 
-. . 

according  to  Steps 3a-3c and (1.1) [remember  that qs is 
. .  

s = n  defined in (1.35)]. 

using (1.23) and (1.2). From (1.24)+1.27) using Step 3b  and 
(1.29) it follows that 

and then n so large that 

45(n,m(n,AT)) max I R ,  (n,j)l 
n < j < m ( n . A r )  

+(q,(n,m(n>Aq)l<P/2 (1.35) 

which is possible according to Steps 3a-3c. 

End proof of Lemma 1. 
We now proceed with the proof of the  main theorem. 
Proof of Theorem I: We  consider in the following a 

sequence  (“realization”) { e(t)} such that  assumptions C.3 
and C.4 hold and such that  condition (20) of Theorem 1 
holds. 

It follows from  the converse stability theorems (see e.g., 
Krasovskij [39] or  Hahn [40]) that  the  stability  assumption 
(21) of Theorem 1 for 0, = {x*>  implies the existence of a 
function V with properties 

I )  V ( x )  is infinitely differentiable; 
2) O Q  V ( x ) <  1 for X E D A  and V ( x ) = O o x = x * ;  
3) ( d / d ~ ) V ( x ( ~ ) )  = V ’ ( x ) f ( x )  < 0 for x E DA and 

equality  holds only for  x = x * .  
[For the case with general invariant set D,, see Zubov [41] 
for the proper theorems.] 

For convenience in formulations below, we shall let 
D, = {x*}. An  outline of the rest of the proof is as follows: 

Step I :  A  convergent  subsequence x ( n k )  tending  to x’ is 
considered. Then x(nk) is close to 2 infinitely  often, and 
according to Lemma 1, x(m(n,,A~)) will approximately 
be x(nk)+A~f(Y). This  means  that  V(x(m(nk,AT))) is 
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strictly less than V(X(nk)) if ? # x * .  The  formal proof is 
somewhat  lengthy  and involves several elaborate choices 
of constants. The result is, however, intuitively  clear. The 
proof of Step 1 extends  to (1.45). 

Step 2: From  the  above result  it is quite  clear that x* 
must  be  a  cluster  point  to x ( n ) ,  since V ( x ( n ) )  has a 
tendency  to  decrease everywhere in DA except  for x = x * .  

Step 3: If there is another cluster  point to { x ( n ) }  than 
x * ,  say i ,  the  sequence  must move from x*  to i infinitely 
many times. But  then V ( x ( n ) )  is increasing,  which  con- 
tradicts the result of Step 1. Hence,  only  one  cluster  point 
exists and  convergence follows. 

Step 1: Any  cluster  point of { x ( t ) }  outside D, yields 
strictly  decreasing values of V .  

From  assumption (20) of Theorem 1 there exists a 
subsequence,  such  that 

.(&)ED and \cp(&)l< c. (1.40) 

Since D i s  compact,  there exists at least one cluster  point 
to x ( - )  in 5. Let  the  cluster  point  be denoted  by X and let 
nk be  a  subsequence of iik such  that 

x ( n k ) - + x  as k+W.  (1.41) 

Then (1.44) implies that  by a proper  choice of E ,  AT, and 
K (see [7] for a detailed  account), we have 

V(x(m(n, ,A~)) )<   V(X)-Ad/64  k >  K. (1.45) 

End  Step 1. 
This  means  that if X is a cluster  point  different  from x* 

the  sequence x ( n )  will i.0. be  interior to fi= { x J x E  ER 
and V ( x ) <  V ( 3 -  A~6/64} .  The  conclusion  that x €  DR 
follows from  our  assumption  that  trajectories  that  start  in 
& remain  in  there.  This is required  in  order  to  apply 
Lemma 1 to new points  in i. The set ij is compact. 
Consequently,  another  cluster  point  must exist that yields 
a smaller value of V. Moreover, since x ( t ) E  3 (X,2p) 
nk < r Q m(n, ,A~)  we have from (1.14) 

k" 
~cp(k")l< ~ i ~ " - ~ l c p ( k ' ) l +  C I B ~  x i k " p k ' l e ( k +  1)1 

k =  k' 

(1.46) 
and  hence Icp(m(n,,AT))( < C i.0. so the  argument  can  be 
repeated,  again  applying  Lemma 1 to this new cluster 
point. 

Step 2: Suppose (1.45) holds for any  subsequence 
( x ( n k ) )  that converges to a  point  different  from x * .  Then 

Consequently,  for  arbitrarily  small > 0, 
. . . .  

lim  inf V ( x ( t ) ) = O .  (I .47) 

Consider inf V ( x )  taken  over all cluster  points  in DA. Let 
this  value  be U.  Since  the  set of cluster  points  in DA is 
compact,  there exists a cluster  point i ,  such  that V ( i ) =  
U. If now U > 0, V ' ( i ) j ( 2 )  will be strictly negative (= - 

where m is defined  as  in  Lemma 1. Denote nk= k' and t) and  from (1.45) V ( x ( k ) )  takes a value less than U -  
m(nk,A~)=k" ,  and use the  mean  value  theorem. This 6 A ~ / 6 4  i.o., which  contradicts U being  the  infinum. 
gives Hence, U=O, whch means  that x *  is a cluster  point.  End 

Step 2. 0 

I x ( n k )  - XI < E k > KO ( E ) .  (I .42) I+cC 

Consider now 

V[x(m(nk9A.r))]- V [ x ( n k ) ] ,  

V [ x ( k " ) ] -  V [ x ( k ' ) ] =  V ' ( . $ ) [ x ( k " ) - x ( k ' ) ]  Step 3: From (1.45) and (1.47) it follows that 

= V ' ( X ) [ x ( k " ) - x ( k ' ) ] + [ . $ - x ] *  lim sup V ( x  ( I ) )  = 0. (1.48) 
1-m 

.V"(c)[x(kf') - x ( k ' )  1 Let p* = p ( x * )  be the region for which (2) is exponentially 
where .$ and .$' belong  to 3 (X, E +AT). 

Lemma 1 to x(nk) ,  which gives  lim  Sup ~ ( x ( n ) ) =  W > O .  (1.49) 

stable for x ( k ) E %  ( x * , p * ) ,  as in (I.ll), (1.12). 

Now take E < p($, and we can in view  of (1.42) apply  Suppose that 

n+oc 

x(k")-x(k')=A7f(X)+q1(k',k",F)+q2(k',k",F) Take W< w such  that 
where qi are subject  to (IS), (1.6). 

Insert this into (1.43) 

V [ x ( k " ) ] -  v [ x ( k ' ) ] = A ~ V ' ( x ) f ( x ) + R 3 ( A ~ , n k X )  

(1.9 
where 

R , ( A T , ~ ~ , ~ ) = ( ~ - X ) ~ V ' ~ ( . $ ' ) ( X ( ~ ' ' ) - ~ ( ~ ' ) )  

+ V ' ( x ) { q , + 4 2 } .  

Now  suppose  that  the  cluster  point X is different from the 
desired  convergence  point x * .  Then V'($f(F) = - 6, 8 > 
0. 

{ x I V ( x ) <  W } c B ( x * , p * )  

and  consider the  interval I =  [ W/3,2 W / 3 ] .  (we may of 
course  choose  any  subinterval;  there is no  particular  rea- 
son to  divide it up in thirds.) 

Since x* is a cluster  point and since V ( x ( n ) )  is 
supposed  to  have  a  subsequence  tending  to W ,  this inter- 
val I is crossed  "upwards" and "downwards"  infinitely 
many times by V ( x ( n ) ) .  

We shall now proceed to show  that (1.49) would imply 
that there  must be a  subsequence of V(x(n)) that belongs 
to I ,  by proving  that in % ( x * , p * )  the "step size" x(n + 1) 
-x(n)  tends  to  zero. 
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First,  let X(iik) be  a  subsequence  tending  to x*,  such 
that l q ( i i k ) l  < C .  (The existence of such  a  sequence follows 
from  Step 2 and the  stability  argument (I.46), using the 
fact that p=p( i )  is bounded  from below  by a positive 
constant  in 0.) 

For t > i ik ,  but  such  that x ( t )  "remains" in B (x*,p*)  we 
have, (1.46) 

Iv(t)l < ci'-'klv(6k)l 
r 

+ C ( B (  x P - k l e ( k +  1)1 Q C ( t , X , C )  
k =  nk 

with v ( t , i , c )  defined by (16). 
Hence, 

l ~ ( t ) Q < t , x ( t ) ~ d t > ) l  Q ~ ( t ) l Q ( t , x * ~ o ) l  

+ y ( t ) X , ( x * , O , p * , ~ ( r , r ; , c ) ) ( ( x ( t )  - x * (  + Iv(t)l) 

. ( p * + u ( t , i , c ) )  (1.50) 

< y ( t ) l Q ( t , x * , O ) l + y ( t ) ~ ( x ' , O , p * , r ; ( f , i , c ) )  

where  the  first  inequality follows from  assumption  C.l. 
It follows from  Step  3a of the proof of Lemma 1 that 

the  first  term of the RHS of (1.50) tends  to zero and  from 
Step 3c that the  second  one  tends  to  zero.  Consequently, 
inside B ( x * , p * )  the step size tends  to zero, and  hence 
there will be  a  subsequence of V ( x ( n ) )  entirely in the 
interval I .  Consider now a  special,  convergent  sequence of 
" upcrossings," that is a  subsequence of this. 

Let  the  sequence ni be  defined  such  that 

V ( x ( n i  - 1)) < w / 3  (1.5 1) 

V ( x ( n i ) )  > w/3 (1.52) 

V(x(ni+sk))>2W/3 (1.53a) 

where 

sk is the  first s for which V ( x ( n k  + s)) G I  (1.53b) 

x(ni)-+Z as k-+oo. (1.54) 

From (1.51) and (1.52) it is clear that V ( Z ) =  W/3  and let 
V'(Z)f(Z) = - 8. From (1.45)  we now have  that 

V ( x ( m ( n ; , A ~ ) ) )  < W/3 - 8 A ~ / 6 4 .  (1.55) 

This  means  that V ( x ( n i  + s i ) )  B I where si = m(n& AT) - 
ni . 

Suppose now that there is a sk < si such  that V ( x ( n i  + 
s k ) )  > 2  W/3.  However, T/ is continuous  and x(n i  + s), 
(s< m(ni,AT)- ni) will belong to an arbitrarily  small 
neighborhood of x(.;) for  sufficiently  small Ar according 
ta Lemma 1. Therefore (1.55) implies a  contradiction to 
the  existence of a  subsequence ni with properties 
(1.51HI.54).  Hence,  no  interval I may exist, W must be 
zero  and (1.48) follows. End  Step 3. 

Equation (1.48) implies  according  to  the  properties of 
V(.) that x,+x*. This  concludes  the proof of Theorem 1. 
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We shall now proceed  to  prove  that  assumptions  A or B 
imply assumptions  C.3 and C.4.  This will be  done only for 
the case y ( t )  = l / t ,  which anyway  should  be  the  most 
common  one. We may also  remark  that  since  the  correc- 
tion  term Q ( a ,  -, 0 )  may be time-varying, this case  also 
includes  cases  where 

c ( t >  
y ( t ) =  t ; c ( t ) + c  as t+oo (1.56) 

be redefining  the factors of the product 

Y ( t )Q  ( t , x , ~ ) .  

Lemma 2. Suppose  the  algorithm  (I), (2) is subject to 
assumptions A or B. Assume that y ( t )=  I / t .  Then C.3 
holds w.p.1 as well as Steps 3b  and 3c of the proof of 
Lemma 1. If, in addition 

EX,(x,p;(t,x),p(x),v(t,h,c))(l+t.(t,A,c)) 

converges at t+m, then  also C.4 holds w.p. 1. 
Pro08 For y( t )  = 1 / t we have  from (1 8a) 

z ( t , F ) = f  1 '  2 Q(k;x ,@(k ,x ) ) .  (1.57) 
k = l  

We shall apply  the following ergodicity  result of Cramkr 
and  Leadbetter [38, pp. 94-96] to (1.57). 

Let f ( k )  be  a  sequence of random variables with zero 
means  and  covariances 

Iw-(k>f(s>l Q 1 + "+" Ik - s)q  7 . O Q 2 p < q <  1. (1.58) 

Then 

- 2 f ( k ) - + ~  w.p.1 as t-+m 1 '  

(The proof  in  [38]  is p e n  for  the  continuous time case, 
but it goes through  without  changes  for  the  discrete time 
case.) 

In  order to  calculate  the  covariances,  introduce  for 
k > s the  variable 

k = l  

C W G )  

by 

@ ~ ( k + l , x ) = A ( x ) ~ , P ( k , x ) + B ( x ) e ( k + I ) ;  @,,"(s,X)=O. 

This  variable is independent of @(s,F) according  to 
assumption  A.1= B. I ,  and 

J p ; ( k , x ) - g ? P ( k , q  Q c.h(x) I q ( s S ) I  
k - s  - 

.( Q u(k,A(x) ,c)) .  

Hence, using assumption A.3 or B.3 

lQ(k,F,F(kX))- Q(k,Z,G:(k,F))) 

End proof of Theorem 1. Q 3 C , ( x , ~ ( ~ , x ) , 0 , u ( k , h ( x ) , c ) ) c h ( x ) k - - S I Q ) ( S , X ) J .  
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Moreover,  from A.2,  A.3 (according  to which X., and 
Cp(s,F) are  bounded)  or B.7, 

ElQ ( k , x , @ ( k , x ) )  - Q ( k , 2 , s ( k , X ) ) l 2  < c*X(X)"-". 

(I.59a) 

Now 

I C O V {  Q(k,x,@(k,x)),Q(s,x,G(s,x))}I 

=Icov( Q ( k , x , ~ ( k , x ) ) + [ Q ( k , x , g s ( k , x ) )  

- Q(k,x,cp, ( k ,T ) ) ] ,Q  ( s>x>@(sJ)))  I 

= ~ O + C O V [  [ Q ( k , x , c p ( k , x ) ) - Q ( k , X , ~ ( k . x ) ) ] ,  

Q ( s , j T , @ ( s , x ) ) ) I  Q c . A ( X ) ~ - ~ ,  (I.59b) 

where  the  second  equality follows since $'(k,*q and 
tj5(s,?) are  independent, and the  last  inequality follows 
from Schwarz' inequality, (1.59a), and assumption B.7. 

Hence, (1.58) holds and 

[ Q (k ,x ,F(k,x))-  K ? ( k , 2 , G ( k , ~ ) ) ] + O  
k = l  

w.p. 1 as f+ ca 

which  according to assumption A.5=B.6 implies that 

- 2 Q(k,ZG(k,X))-+j(F) 
1 '  w.p.1 as t+m. 

(I .60) 

Notice  that (1.60) holds  for  any given X w.p.1. For  a given 
realization w outside  a  null  set  it  does  not  immediately 
follow that  it  holds  for all x E DR. To conclude  that, we 
first  note  that (1.60) will hold w.p.1 simultaneously over a 
dense  denumerable,  subset of DR.  (The  union of a  de- 
numerable  number of null  sets is a  nullset.)  Hence,  for  a 
given realization  outside  a  null  set (1.60) holds  for  all X in 
a  dense  subset of DR. But since Q (-, -, 0 )  and f(.) are 
continuous  in x, we may extend  this  set  to DR itself. 

The proof of the  second  part of Lemma 2 is analogous. 
(Under assumptions A it is trivial.) 

End proof of Lemma 2. 
The proof for  general  sequences {y(n)}. subject  to A.8. 

k = l  

A.9 is achieved by first  proving  that 

m(n,As)  

E 2 y ( 4 [  Q ( k T 3 @ ( k 7 x ) )  I k = n  

- E Q ( k , -  x , d k , x ) ) ]  - < C-y(n)' (1.61) (0 
and then  proving  convergence by the Borel-Cantelli 
Lemma and assumption A.7. 

We shall  need  the  estimate (1.61) in Appendix 111, and 
let us therefore  prove (1.61) for p =  1. The case with 
general p is proven  analogously,  though  with  more  techni- 
cal  labor.  The  details  are given in [7]. Denote  for  short 

Qk=Q(k ,F,@(k ,X))  

and assume  that Qk is a  scalar and that EQk = 0. Then 

\ k = n  J k = , , s = n  

where the  first  inequality follows from  assumption A.8 
and (1.59b). It remains now only  to  prove  that 

(m(n ,dT) -  n )  < C/y(n). (1.63) 

Since y( .) is decreasing 
m 

2A7>2y(k)>(rn-n)y( rn)  
n 

or 

(rn - n )  < c/y(m). 

Moreover,  from  assumption A.9 

we have 

or, upon repetition 

This.  together with (1.64) implies (1.63) and the proof of 
(1.61) is complete  for p = 1. 

Proof  of  Corollaty to Theorem I: The  function V ( x )  
with the  property (22).  whose existence is assumed in the 
corollary  plays  the role of the  Lyapunov  function 
throughout  the proof of Theorem 1. Since, in the formula- 
tion of the  corollary  there is no  guarantee  that x ( r n ( n , h ) )  
will belong  to D, even if x ( n )  does. the possibility of a 
cluster  point  on  the  boundary of DR cannot  be  excluded. 
Moreover, if 6 is unbounded  the  existence of a  cluster 
point in D i s  not  guaranteed. But if no  cluster  point exists, 
then the sequence {X(.)} will tend  to  infinity, which in 
that case will be a  boundary  point of DR. 

End proof of corollary. 
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APPENDIX I1 
PROOFOFTHEOREM2 

To prove (25a) we first assume that f (x* )#O.  
We first note  that  according  to  Lemma 2, assumptions 

Let AT(x*)= AT* be “the sufficiently small” AT as  de- 

Take 

A  or B imply that (1.4)-(1.6) hold w.p.1. 

fined in Lemma l. 

p* < AT*lf(X*)1/4 (11.1) 

and let 9* = {ulx(t)+% ( x * , p * ) }  with P(L?*)= P* >O. 
If x ( t )  converges to 3 ( x * , p * ) ,  it is ih particular inside 

$6 (x*,2p*) infinitely often.  Therefore,  there is a cluster 
point X inside % (x*,2p*). Also, inside %(x*,2p*) the 
observation  equation (2) will be  stable  for  sufficiently 
small p*, according to Step  2 of the proof of Lemma 1. 

Hence, we can select a  subsequence { x ( n k ) }  tending to 
X, such  that lcp(nk)l < C, i.e.,  (1.3) holds. Then Lemma 1 
implies that 

x ( m ( n k , A T * ) ) X x ( n k ) + f ( x * ) - A T *  

asymptotically  as  k+cc  for w Ea* except on a null set. 
This  means  according  to (11.1) that x(m(nk,AT*)) is out- 
side ’% (x*,2px),  and the  assumed convergence is con- 
tradicted. 

To illustrate  the  basic  idea of the proof of (25b), con- 
sider  the special case 

Q ( t , k , r p ( t + l ) ) = A x + e ( t + l )  

where A is an nln matrix and e( e )  is a  sequence of 
independent  random  variables with zero mean values. 
Suppose that A has  an eigenvalue A with ReX > 0, and let 
L be  a  corresponding left eigenvector. Let T(n)= Lx(n)  
and c(n)=  Le(n).  The  condition on c o v e  implies that 
{E(.)} is not identically zero. Then  the  algorithm (1) can 
be written 

that ~ ( m )  will, with probability  one,  not  tend to zero  as m 
tends  to infinity. Hence, x ( m )  will not converge to 0 
(= x*)  with nonzero  probability. 

The general  case is proven by linearization around x* 
and the  additional  terms  are  taken  care of by appropriate 
approximations. Like in the proof of Lemma 1, this leads 
to several technicalities, but  the basic idea  remains  the 
same  as  above. 

To keep the  Appendices within reasonable size, these 
technicalities will not  be given here. The full proof can be 
found  in [7]. Proofs  for  related  algorithms  are given  in [6] 
and  [l]. 

APPEKDIX I11 
PROOF OF THEOREM 3 

The  idea of this proof is to apply  Lemma 1 to obtain 
local estimates of how much x ( t )  differs from  the  corre- 
sponding  trajectory, and then linking such estimates 
together  making use of the stability property. 

Heuristic  Outline of How the 
Estimates  are  linked  Together 

The  idea of how the local estimates are extended to 
global ones  can be geometrically expressed as follows. cf. 
Fig. 5. 

Assume that  the  estimate  at time T~ is in  the  interval A .  
The trajectories that  start in A belong at time T ~ + A T ~  to 
the  interval B which is smaller than A since the trajectory 
is stable.  Now,  the estimates obtained by the  algorithm 
differ  from  the  trajectories with a small quantity  accord- 
ing to Lemma 1. Denote this distance by C. During  the 
time interval A r k ,  the  estimates  have  not diverged from 
the  nominal  trajectory if A < B + 2C. 

To achieve this, A and  AT^ must be  chosen with care. 
The  interval Ark must  be large enough to let the trajecto- 
ries converge sufficiently, and small enough  to limit sec- 
ond-order effects and the noise influence. 

The  formal proof will be developed in 5 steps. In  Step 1 
the  details of the  application of Lemma 1 are given. Step  2 
deals with the implications of the  stability  assumption. In 
Step 3 an interval for  AT^ is selected. corresponding to  AT^ 
not being too small nor too large as  described in the 
heuristic outline. In Step  4 it is shown that the estimates 
stay with the given €-region as depicted in Fig. 5 if certain 
stochastic  variables  are less than  a given value. Step 5 
calculates  the  probability  that they are less than this value. 

Step I-Application of Lemma I :  
Order  the  set of indices I =  { n i }  such  that 

n , < n , < . . .   < n k < n k + , < . . .  . 

Denote AT/, = T ~ ; + , , - - T ~ ~ .  Then by taking .?=x(n,) in 
Lemma 1 we obtain 



A:R; 
Step  2-Stability of the Trajectories 

According to  the assumptions of the  theorem  there 
C exists  a  function V(Ax,r) that is quadratic  in Ax and such 

B 
that 

-V(AX,T) < - CIAxl2 C > O  (111.9) d 
dr 

along  solutions of the  variational  equation of (19).  Since 

tional loss of generality to assume that 

%% C 
Nomffai fm e C h ' Y  
X'[ZG,Xh$) 

Fig. 5. To illustrate  the  idea of the proof of Theorem 3. we assume V(AX,T) to  be  quadratic  in Ax it is no  addi- 

where q,(nk,nk+ l , F )  is given by (1.6) and (1.39). Since V(Ax,r)=lAx12 
x"k = x ,  

lq2(n,ATk;F)l < C ~ A T ~ .  
since  it is always  possible  to  make  a  (time-dependent) 
change of metric. 

Moreover q l ( n k , n k + l , i )  is given by (1.38). 

valid  only if  AT^ is sufficiently  small and nk so large  that 

Then (111.9) implies that 

From  Lemma 1 we also  know that (111.1)~  (111.2) are I ~ D ( ~ + A ~ ; ~ , x + ~ x ) - x D ( ~ + A ~ ; ~ , ~ ) I f ( l - ~ A ~ ) l A x l  

(111.10) 
( 4 1 ( n k , n k + l , x ( n k ) ) l < p / 2 '  (111.3) for some 1 >h>O. 

We  first  note  that  the  constant C, in (111.2) can  be  taken End  Step 2. 
to  be globally valid in 5, according  to  the  expression Step  3-selection of an Interual for A T k  

(1.39) and since If (x)l and k, are  bounded in D. Mor? To obtain  the  upper  and lower bounds  for Ark dis- 
over,  there is a  common lower bound  to Aro(x) for x ED, cussed  under  the  heuristic  outline,  let 
which can  be realized  as follows. 

The  radius 2p, which is so small  that (1.12) implies (1.1  1) 
depends  on X and is a  measure of how fast A (x) changes 

46oM Z o M 4  4 
E,=min - ( A '  3x , \lpM ). (111.11) 

in-a neighborhood of X. Since A ( x )  is Lipschitz  continu- 
ous in D and 5 is compact,  the  radius - p(F) will have  a  Choose E < eo. Then  automatically 
positive lower bound as X varies  over D. Denote  this by p .  
Let [cf.,  (1.34)] 

(111.12) 

since ATk > 6, according  to  the  assumptions of the  theo- 
(111.4) rem.  An  upper bound  for 8 7 k  can  be  obtained by possibly 

extending  the  set I ,  cf., beginning of Step 1 .  Do this so 

which is strictly positive, since I f  ($1 and k, are  bounded 
in 5. 

Then  (IILl), (111.2)  is valid for  AT^ <Go if  (111.3) holds. 

that 

(111.13) 

By solving  the  differential  equation (19) from r to 
r +Ar with X as the  initial  condition we have 

The resulting  set I may depend  on E. According  to 
(111.1 l), automatically Ark <Go. 

lx'(T+Ar;r,x)-((x+AT.f(x))lQ LAr2 (111.5) End  Step 3. 
- Step 4-The Estimates Remain in an E-Neighborhood of the 

where L can be  taken  globally in D. Introduce  the follow- Corresponding Trajectory (f q , ( n , +   I , n k . ~ ( n k ) )  is Sufficiently 
ing  abbreviated  notation Small.  all nk E I 

Assume that x p ( j ) = x D ( r  ; T  , . (nil) .  (111.6) 

Equations (III.l), (111.2), and (111.5) now imply in the 
notation of  (111.6) where 

' 5 s  
l q l ( n k + l ~ n k , . ~ ( n k ) ) l < r ( E )  (III.14a) 

if  (111.3) holds.  Introduce  According to (111.1 l), 

M =  c,+ L.  (111.8) T ( € )  < 6/2. 

The estimate (111.7) with the  expression (1.38) for q, is the  Assume  also  that 
basis  for  the  rest of the  proof. 

End  Step 1. I x g ( k ) - x ( n k ) l  Q E .  

(III.14b) 

(111.14~) 

(111.15) 
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= c + M  AT - - AT&- [i 4M 

where the  second  inequality follows from (111.10) and 
(111.16), the  third  from (111.15) and (III.14b). and the last 
one from (111.13). 

The conclusion is that if x ( n k )  lies in an E-neighborhood 
of the  trajectory, so will x ( n k + , )  if  (111.14) holds. If 
(111.14) holds  for all nk E I, then 

sup - x: ( k ) l Q  E.  (111.18) 
n k € I  

End Step 4. 

(111.14) holds  for all n, E I. 
Step 5-The Probability That (111.14) Holds 

(1.38) and (1.22) be decomposed as follows 

It  remains now only to  estimate  the  probability  that 

The expression for ql(nk+l,nk,x(nk)) may according  to 

The  last  term  in this expression is deterministic and tends 
to zero according  to  assumption A S  = B.6 and according 
to (1.1) (m = m(n,AT)). Let N ,  be such that this last  term is 
less than r ( ~ ) / 2  for nk > N , .  

For the first term of  (111.19) the  estimate of its  2p-ab- 
solute  moment, (1.61) holds. The second  term of (111.19) 
has  a  mean  that is bounded by 

m 
c. y ( k ) A k - "  < -y(n) 

n 1 -A 
c 

2P 

<( &) .C-y(n,)p. (111.23) 

The probability that (111.14) does  not  hold  for  some 
nk > N,, nk E I is thus  bounded by 

Combining  the  conclusion of Step  4 with this result gives 
the  assertion of the  theorem. The  number To mentioned in 
the  theorem  equals N, defined by (111.22). 

Remark: The inequality in (111.24) is somewhat waste- 
ful.  For example, if y ( t )=  l / t ,  then with 

implies that nk+ ,GS nk( 1 +AT&) for small  AT^ and taking 
p = 1 in (111.24) an upper  bound  for  the LHS of  (111.24) is 
given by 

2 

< +( -&) -C- 4M Q C/c5. (111.25) 

End proof of Theorem 3.  

APPENDIX IV 
PROOF OF THEOREM 4 

In virtue of the  projection we know that x ( t )  belongs to 
a  compact  area i.0. that is part of DR. We  could  therefore 
apply  Theorem 1 directly, apart from  the  fact that  the 
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projection  algorithm (28), (29) differs from the  algorithm 
(l), (2) treated in Theorem 1. 

It  therefore suffices to show that the  “projection”  takes 
place at most  a  finite  number  of  times w.p.1. After  the  last 
time x ( t )  is forced  into D, the  projection  algorithm  coin- 
cides with the  basic  algorithm (l), (2) and the proof of 
Theorem 1 is valid. 

If indeed,  the  estimate x ( r )  were outside D l  infinitely 
often,  then  it  would have to pass from D, to  outside Dl 
i.o.,  i.e., to a  higher  value of U ( x ( t ) )  (see (31)) in spite of 
the  force  trying  to  decrease U according to (30). In  Step 3 
of the proof of Theorem 1 it was proved that this is 
impossible, and hence the projection facility in (28) is 
used  only  a  finite  number of times. Also, the estimates 
cannot  remain  in 6 from  a  certain time on.  since  condi- 
tion (30) shows that (using  Step 2 of the proof of Theorem 
1)  they  will  be forced  into D,. 

APPENDIX V 
Os SOME  EXTENSIONS 

Continuous  Time  Algorithms: I t  should  be clear that  the 
theorems and proofs given here are valid also for continu- 
ous time algorithms. with proper and straightforward 
modifications. 

The Case when Assumption A.5 = B.6  does nor hold: The 
basic  assumption,  defining  the RHS of the  differential 
equation is  A.5 = B.6. 

Let EQ ( t ,F ,@(t ,Y) )  be  denoted by f (X, t ) .  In the  proof 
it is only used that 

r n ( t 1 . h )  

2 y(k)f(-T,k)+Al;f(-F) as n+w (v.1) 
k = r1 

which,  for  the  case y ( k )  = 1 / k is equivalent  to 

- f(F,k)+f(F) as t j m .  1 ‘  
(V.2) 

k = l  

Notice  that (V.l) or (V.2) very  well  may hold even if 
A.5=B.6  does  not  hold.  It is consequently unnecessarily 
restrictive to assume  convergence of f ( F . t )  as t + m .  
Moreover, if (V.1) does  not  hold,  it is sufficient to require 
the existence of a twice differentiable  function V ( s )  
[which  plays the role of Lyapunov  function  for  the in this 
case  undefined  differential  equation]  such  that 

r n ( n , A r )  

v’(F) 2 y ( k ) f ( , ? . k )  < -6(F)‘A‘T (v.3) [ k = n  1 
for all sufficiently large n, where 6 (3 > 0 for X4 D,. 

More Complex Generation of the Obsercations: In  some 
cases, like for  the  extended  Kalman filter, which is pre- 
sently  being  analyzed using the  methods of this paper,  a 
more complex mechanism  replaces  (2): 

r p ( t ) = A ( z ( t -  I ) ) rp( t -  1)+ B ( z ( t -  l))e(t) (V.4a) 

z ( t ) = h ( z ( t -  I ) , x ( t ) ) .  (V.4b) 

Equation (V.4) if  of course just a  special  case of the 
general,  nonlinear  dynamics (3) .  To treat  this  case let F(Y) 
denote  the  limit of the  recursion 

z ( r , F ) = h ( z ( t -  l,-T)?F), t-x P . 5 )  

and define 9;( t ,Y )  through 

F(l,F)=A(F(F))@(r- l ,F)+B(F(F))e(t) .  (V.6) 

The theorems will then  hold in the  same  formulations  as 
before. if the following three  conditions on (V.4b) hold: 

I z ( t ) - z ( t , Y ) l <  C- max IX-x (k ) l  
r < k < r  

if z ( r )  = z ( r , F )  (V.7) 

IF(Y)-z(~,F)I < c~‘*IF(F)-z(O,X)~;  p< 1 (V.8) 

and 

Iz(t)l+ 1rp(t)l< c i.0. (V.9) 

To prove this we note  that  assumption A.4, (V.7) and 
(V.8) imply that 

l A ( z ( j ) ) - A ( F ) [  Q c max Ix(k) -Xl  
n < k < j  

+ c p j - ” ( -  - z(x>-z(n) l .  

If  we use this  estimate in (1.16) together with (V.9) we 
arrive at the  same  expression as in (1.17) and the  proof 
continues  without  further  changes. 
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