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AN APPROXIMATION ALGORITHM FOR THE DISCRETE TEAM
DECISION PROBLEM∗

RANDY COGILL† AND SANJAY LALL‡

Abstract. In this paper we study a discrete version of the classical team decision problem. It
has been shown previously that the general discrete team decision problem is NP-hard. Here we
present an efficient approximation algorithm for this problem. For the maximization version of this
problem with nonnegative rewards, this algorithm computes decision rules which are guaranteed to
be within a fixed bound of optimal.
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1. Introduction. The problem of decentralized control arises when several de-
cision makers, each with limited information, must make simultaneous cooperative
decisions. The fact that multiple decisions are made on the basis of incomplete and
differing observations of the overall system state is what sets decentralized control
problems apart from conventional control problems. Such problems arise naturally in
applications involving sensing and communication networks. An example is detection
by multiple sensors in a sensor network [7]. The job of the sensors is to take mea-
surements of the environment and transmit a minimal amount of information to a
fusion center which estimates the state of the environment based on the information
received from the sensors. Each sensor is faced with a decentralized decision making
problem: based on its limited measurement of the environment, it must decide what
information it should send to maximize the probability that the fusion center makes
a correct estimate.

Marschak was probably the first to study the problem of decentralized decision
making. In his work [5], he introduced team theory as a framework for studying
decision making problems in organizations. The class of problems considered by team
theory, called team decision problems, are analogous in some ways to static games. In
these problems, the state of the system is chosen randomly according to some specified
probability, and each decision maker partially observes the state. Based on their
observations, each decision maker chooses an action. The goal is to choose decision
rules which maximize the expected value of a reward which is jointly a function of the
system state and all actions.

The later work of Radner [6] presented optimality conditions for a class of team
decision problems with reward functions which are concave and differentiable in the
decision variables. The main result of that work is that, subject to some technical
conditions, person-by-person optimal policies are globally optimal for such problems.
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A set of decision rules is person-by-person optimal if no improvement can be obtained
by changing the decision rule for one decision maker while leaving the decision rules
for others fixed. A person-by-person optimal policy can be computed by sequen-
tially optimizing the decision rule for each decision maker while leaving the remaining
decision rules fixed.

The problems we are interested in have state and action sets which are finite,
so the results regarding global optimality of person-by-person optimal policies do
not apply. In fact, the problems that we consider may have many person-by-person
optimal policies, and there may exist a person-by-person optimal policy which is
quite poor compared to the globally optimal policy. Although problems with finite
state and action spaces were presented in the original work by Marschak [5], no
positive results regarding computation of optimal policies for these problems followed.
Tsitsiklis showed in [8] that the general team decision problem with finite state and
action spaces is NP-hard, explaining the lack of positive results for this problem.
Another recent paper which considers the discrete team decision problem is [9]. In
that paper, the authors consider problems with finite state and action spaces and
reward functions which are multimodular in the decision variables. Multimodularity
of functions on discrete spaces is analogous to concavity of functions on continuous
spaces. The authors attempt to use multimodularity to extend the results of Radner
to discrete problems. They show that necessary and sufficient optimality conditions
are not assured by multimodularity, but this property still can be exploited when
searching for optimal policies.

Since it is highly unlikely that an algorithm exists which can efficiently compute
optimal solutions to the general team decision problem, this leads us to ask if an
efficient algorithm exists which can compute acceptable suboptimal solutions. Many
problems, although NP-hard, admit efficient approximation algorithms which produce
solutions guaranteed to be within a fixed bound of optimal [1]. In this paper we
present an approximation algorithm for the team decision problem. Specifically, the
contributions of this paper are the following:

• For the general team problem with two decision makers, we present an algo-
rithm that runs in O(|Y1||Y2||U1||U2|) time. When the objective is to max-
imize a nonnegative reward function, this algorithm computes a decentral-
ized policy guaranteed to be within a factor of 1/min{|U1|, |U2|} of optimal.
Here, |Y1|, |Y2| are the number of states and |U1|, |U2| are the number of ac-
tions associated with decision makers 1 and 2. Even the special case with
min{|U1|, |U2|} = 2 is still NP-hard, and in this case we obtain a 1/2 approx-
imation factor.

• We consider the class of team decision problems with two decision makers
and multimodular reward functions, as in [9]. We show that this special
case is still NP-hard, although the presence of multimodularity leads to a
significantly tighter approximation ratio of 1/2 − 1/(2 max{|U1|, |U2|}) for
our algorithm.

An outline of this paper is as follows. In section 2, we introduce the general
discrete team decision problem and provide a proof that this problem is NP-hard.
In section 3, we present an approximation algorithm for the general team decision
problem and prove an approximation ratio for this algorithm. In section 4, we consider
a special class of team decision problems with multimodular cost functions. In this
section, we show that this class of problems is still NP-hard, but the approximation
ratio for our algorithm is significantly tighter on these problems.
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2. Problem formulation and complexity. In this section we will present
the Team Decision Problem (TDP), the problem which is the subject of this
paper. Before presenting the formal definition, we will briefly describe this problem
in words. The problem is essentially a feedback control problem, where the goal
is to choose actions in response to observations with the goal of maximizing some
reward. The system is in a state described by the variables (y1, y2). After observing
the system state, we would like to choose a pair of actions (u1, u2) to make the
reward c(y1, y2, u1, u2) as large as possible. However, the actions must be chosen in
a decentralized manner. That is, action u1 is chosen based only on an observation of
y1 and action u2 is chosen based only on an observation of y2. Our goal is to choose
decision rules γ1 : Y1 → U1 and γ2 : Y2 → U2 to maximize some measure of total
reward. A formal definition of the problem is the following.

Team Decision Problem. Given finite sets Y1, Y2, U1, U2 and a nonnegative
reward function c : Y1 × Y2 ×U1 ×U2 → Q+, find decision rules γi : Yi → Ui, i = 1, 2
which maximize the reward

J(γ1, γ2) =
∑
y1,y2

c(y1, y2, γ1(y1), γ2(y2)).

A few words are in order regarding the formulation given above. First of all,
this formulation only considers the case in which two decision makers are choosing
actions. In general, we have problems where n decision makers are independently
choosing actions u1, . . . , un. It turns out, as we will see shortly, that this problem is
computationally intractable even in the two decision maker case. This is the simplest
special case which exhibits the inherent computational complexity of this problem, and
this case is the focus of this paper. It is worth noting that the approach taken in this
paper can be extended to problems with more than two decision makers, although the
resulting approximation guarantees degrade exponentially as the number of decision
makers increases.

In [8], this problem is posed as maximization of the expected reward with respect
to some probability mass function p(y1, y2). While this formulation may relate more
naturally to the applications where this problem is of interest, the formulation in
terms of expected reward and the formulation in terms of total reward are essentially
equivalent. That is, given any instance of the problem of maximizing expected re-
ward, we can easily modify the reward function to obtain an equivalent instance of
maximizing total reward. Conversely, any instance of the problem of maximizing total
reward is equivalent to an instance of maximizing expected reward where p(y1, y2) is
uniform. Therefore, we consider the problem of maximizing total reward simply to
reduce the amount of required notation.

Also, it is interesting to note that the corresponding centralized problem is trivial.
By the centralized problem, we mean the problem of choosing a policy γ : Y1 × Y2 →
U1×U2, to maximize the total reward. This problem is solved by simply choosing the
(u1, u2) which maximizes c(y1, y2, u1, u2) for each (y1, y2). Although the centralized
problem is easy, it was shown in [8] that TDP is NP-hard, even when |U1| = |U2| = 2.

Here we will present a simple new proof of NP-hardness to keep our treatment
self contained. We will do this by also showing that the special case of TDP with
|U1| = |U2| = 2, which we refer to as TDP-2, is NP-hard. Our proof of NP-hardness
of TDP-2 involves reducing the problem Maximum Cut [1] to TDP-2. The problem
Maximum Cut is the following. As input, we are given an undirected graph G =
(V,E). The goal is to partition the set of vertices V into two sets S and S so that
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the number of edges crossing from vertices in S to vertices in S is maximized. Given
that Maximum Cut is NP-hard, we have the following theorem.

Theorem 2.1. The problem TDP-2 is NP-hard.
Proof. Consider an arbitrary instance of Maximum Cut specified by an undi-

rected graph G = (V,E). We construct a corresponding instance of TDP-2 as follows.
Let Y1 = Y2 = V . Define c1 as

c1(y1, y2, u1, u2) =

{
|V |2 if y1 = y2 and u1 = u2,

0 otherwise.

Define c2 as

c2(y1, y2, u1, u2) =

{
1 if (y1, y2) ∈ E and u1 �= u2,

0 otherwise.

The goal is to show that the instance of Maximum Cut is solved by finding an
optimal policy for the instance of TDP-2 with reward

c(y1, y2, u1, u2) = c1(y1, y2, u1, u2) + c2(y1, y2, u1, u2).

The optimal reward satisfies |V |3 < J(γ∗
1 , γ

∗
2 ). The lower bound is achieved

by choosing any policy satisfying γ1 = γ2. Such policies maximize the component
of the reward associated with c1. As long as G contains one edge, we can always
achieve reward strictly greater than |V |3. Moreover, if γ1(i) �= γ2(i) for some i, then
J(γ1, γ2) ≤ |V |3. This is because, in this case, the component of the reward associated
with c1 is at most (|V | − 1)|V |2 and the component of the reward associated with c2
is at most |V |2. Hence γ∗

1 = γ∗
2 .

Given any decision rules γ1 and γ2 satisfying γ1 = γ2, we obtain a cut for the
instance of Maximum Cut by letting

vi ∈
{
S if γ1(vi) = 1,

S if γ1(vi) = 0

for all vi ∈ V . The capacity of this cut is exactly 1
2J(γ1, γ2) − 1

2 |V |3. Hence, any
algorithm which computes optimal policies for arbitrary instances of TDP-2 in poly-
nomial time can be easily modified to compute optimal cuts for arbitrary instances
of Maximum Cut in polynomial time.

3. An approximation algorithm. Given that TDP is NP-hard, it is highly
unlikely that an efficient algorithm for computing optimal policies exists. However, for
many NP-hard problems there exist efficient approximation algorithms which produce
suboptimal solutions which achieve a reward guaranteed to be within some constant
factor of optimal. In this section we will give an approximation algorithm for TDP

which produces a suboptimal policy in O(|Y1||Y2||U1||U2|) operations.
Before presenting our approximation algorithm, we would like to first consider

algorithms that produce person-by-person optimal policies [6]. A person-by-person
optimal policy is a pair of decision rules γ1, γ2 for which no improvement can be
obtained by modifying γ1 while leaving γ2 fixed or by modifying γ2 while leaving
γ1 fixed. A person-by-person optimal solution can be considered analogous in some
ways to a Nash equilibrium. Person-by-person optimal solutions can be computed by
choosing initial decision rule γ1 and γ2 and alternately maximizing over one decision



APPROXIMATION ALGORITHM FOR TEAM DECISION PROBLEMS 1363

Table 3.1

For this reward function there is a person-by-person optimal policy with reward J(γ1, γ2) = 8.
The optimal policy has reward J(γ∗

1 , γ
∗
2 ) = 400.

y1 = 0
u1 = 0

y1 = 0
u1 = 1

y1 = 1
u1 = 0

y1 = 1
u1 = 1

y2 = 0
u2 = 0

2 1 1 2

y2 = 0
u2 = 1

1 100 100 1

y2 = 1
u2 = 0

1 100 100 1

y2 = 1
u2 = 1

2 1 1 2

rule while leaving the other decision rule fixed until no more improvement is obtained.
For discrete problems, this process will terminate in a finite number of iterations.

For problems with rewards which are continuous, differentiable, and concave in
the variables u1 and u2, it was shown that person-by-person optimality implies global
optimality [6]. This is probably the best-known result for team decision problems. It
is natural, then, to believe that person-by-person optimal policies may be acceptable
solutions to discrete team decision problems. The purpose for considering person-
by-person optimal solutions here is to show that, in fact, person-by-person optimal
solutions may achieve a reward which is arbitrarily far from the globally optimal
reward in discrete problems.

Consider the problem instance with the reward function given in Table 3.1. For
this instance, consider the policy γ1(0) = 0, γ1(1) = 1, γ2(0) = 0, γ2(1) = 1. This
policy is person-by-person optimal and achieves a reward of J(γ1, γ2) = 8. However,
the optimal policy achieves a reward of J(γ∗

1 , γ
∗
2 ) = 400. Here, a person-by-person

optimal policy is suboptimal by a factor of 50. Of course, we can modify the example
to make the reward achieved by the person-by-person optimal as far from the optimal
reward as we like. Therefore, algorithms which start with an arbitrary policy and
seek person-by-person optimal solutions cannot produce polices which are within a
guaranteed bound of optimal.

We will now present our approximation algorithm for TDP. Roughly speaking,
this algorithm first constructs a “marginalized” reward function

c1(y1, u1) =
∑
u2,y2

c(y1, y2, u1, u2),

then computes a decision rule γ1 : Y1 → U1 which is optimal for this marginalized
reward. Then, given γ1, we compute the decision rule γ2 : Y2 → U2 which is optimal
with respect to γ1. Unlike an arbitrary person-by-person optimal policy, this policy
is guaranteed to be within a constant factor of optimal, where the factor depends on
|U1| and |U2|. To obtain the tightest suboptimality guarantee, we may first compute
γ2 and then γ1.

Algorithm 3.1. Assume, without loss of generality, that |U1| ≥ |U2|.
1. Let γ1(y1) ∈ argmaxu1{

∑
u2

∑
y2

c(y1, y2, u1, u2)} for all y1 ∈ Y1.
2. Let γ2(y2) ∈ argmaxu2{

∑
y1

c(y1, y2, γ1(y1), u2)} for all y2 ∈ Y2.
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If |U2| > |U1|, then we just compute γ2 first, followed by γ1. The approximation
guarantee for the previous algorithm is given in the following theorem.

Theorem 3.2. For TDP, Algorithm 3.1 produces a policy γ1, γ2 with value
satisfying

J(γ1, γ2) ≥
1

min{|U1|, |U2|}
J(γ∗

1 , γ
∗
2 ).

Proof. Without any loss of generality, here we will assume that |U1| ≥ |U2|. Since
γ1(y1) ∈ argmaxu1

∑
u2

∑
y2

c(y1, y2, u1, u2), we have

∑
y2

∑
u2

c(y1, y2, γ1(y1), u2) ≥
∑
y2

∑
u2

c(y1, y2, γ
∗
1 (y1), u2)

≥
∑
y2

c(y1, y2, γ
∗
1 (y1), γ

∗
2 (y2))

for each y1 ∈ Y1. Also, γ2(y2) ∈ argmaxu2

∑
y1

c(y1, y2, γ1(y1), u2), so

∑
y1

c(y1, y2, γ1(y1), γ2(y2)) ≥
1

|U2|
∑
u2

(∑
y1

c(y1, y2, γ1(y1), u2)

)

for each y2 ∈ Y2. Therefore, the reward achieved by policy γ1, γ2 satisfies

∑
y1

∑
y2

c(y1, y2, γ1(y1), γ2(y2)) ≥
∑
y2

(
1

|U2|
∑
u2

∑
y1

c(y1, y2, γ1(y1), u2)

)

=
1

|U2|
∑
y1

(∑
y2

∑
u2

c(y1, y2, γ1(y1), u2)

)

≥ 1

|U2|
∑
y1

∑
y2

c(y1, y2, γ
∗
1 (y1), γ

∗
2 (y2)).

Although the approximation guarantee degrades as the number of available deci-
sions increases, we must keep in mind that even TDP-2 is NP-hard, and in this case
we obtain an approximation factor of 1/2.

It is worth noting that Algorithm 3.1, and consequently the proof of Theorem 3.2,
has an alternate interpretation in terms of randomized decision rules. In this inter-
pretation, γ2 is initially set to be the randomized decision rule which selects actions
randomly according to a uniform distribution, regardless of the value of y2. We then
choose γ1 to be the decision rule which is optimal with respect to this randomized
γ2. Finally, the randomized γ2 is replaced with the decision rule which is optimal
with respect to the chosen γ1. While this interpretation of Algorithm 3.1 is slightly
more complex conceptually, this interpretation can be used to simplify the proof of
Theorem 3.2.

We can show that the bound is tight for this algorithm, and it is achieved on a
simple example with |U1| = |U2| = |Y1| = |Y2| = 2 . Consider the reward function
given in Table 3.2. Here, ε is some arbitrarily small constant which is simply intro-
duced to avoid any ambiguity associated with adding a tie-breaking mechanism into
the algorithm. The policy produced by the algorithm, γ1(0) = 0, γ1(1) = 0, γ2(0) = 1,
γ2(1) = 1, achieves J(γ1, γ2) = 2 + 2ε. This is true regardless of which variables we
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Table 3.2

The bound in Theorem 3.2 is tight for this reward function.

y1 = 0
u1 = 0

y1 = 0
u1 = 1

y1 = 1
u1 = 0

y1 = 1
u1 = 1

y2 = 0
u2 = 0

1 0 0 1

y2 = 0
u2 = 1

0 1 1 + ε 0

y2 = 1
u2 = 0

0 1 1 0

y2 = 1
u2 = 1

1 + ε 0 0 1

choose to marginalize over first. However, the optimal policy γ1(0) = 0, γ1(1) = 1,
γ2(0) = 0, γ2(1) = 1 achieves J(γ∗

1 , γ
∗
2 ) = 4 + ε. Since ε can be chosen arbitrarily

small, the ratio between the reward achieved by the computed policy and optimal
policy can be made arbitrarily close to 1/2. Similar examples can be constructed for
larger values of |U1| and |U2|.

It is worth noting that the policy constructed by Algorithm 3.1 in the previous
example is person-by-person optimal. This means that the bound in Theorem 3.2
is still tight even for person-by-person optimal policies obtained by iterating over
decision rules using the decision rules produced by Algorithm 3.1 as a starting point.

4. Approximation ratio for multimodular rewards. In this section we con-
sider a class of team decision problems with specially structured rewards and show
that our algorithm achieves a tighter approximation ratio on these problems. The
problems that we consider here can be thought of as the discrete counterpart of the
problems considered by Radner [6]. In particular, Radner considered problems with
rewards which are continuous, differentiable, and concave in the decision variables. It
was shown that globally optimal policies can be easily computed for these problems.
Here we consider rewards which are multimodular in discrete decision variables. Multi-
modularity is an extension of the notion of convexity to functions of discrete variables.
Discrete team decision problems with multimodular rewards were studied previously
in [9]. The authors attempt to use multimodularity to extend the results of Radner
to discrete problems. They show that necessary and sufficient optimality conditions
are not assured by multimodularity, but this property still can be exploited when
searching for optimal policies. Here we show the class of problems with multimodu-
lar rewards is still NP-hard. However, the presence of multimodularity improves the
approximation ratio to 1/2− 1/(2 max{|U1|, |U2|}) for the algorithm presented in the
previous section. Combining this with the bound proven in the last section, this gives
a bound of 1/3 in the worst case which only improves as the sizes of U1 and U2 increase.

The concept of multimodularity was introduced by Hajek in [2]. In that paper,
multimodularity is defined in terms of local properties of a function and the definition
we give below is proven later to be a property equivalent to multimodularity. However,
here we do not use most of the theory developed for multimodular functions. We use
the definition below because it most clearly relates to convexity.

Definition 4.1. A function f : Zn → R is said to be multimodular iff there
exists a concave function g : Rn → R such that f(x) = g(x) for all x ∈ Zn.

It is worth noting that in the existing literature, multimodular functions are
typically defined as discrete functions which coincide with convex functions. Since
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we do not know of a corresponding term for discrete functions which coincide with
concave functions, we simply refer to these as multimodular as well. Also, throughout
this section we consider functions which are defined on some subset S ⊂ Zn. When
we say that such a function is multimodular, we mean that there is some concave
function which coincides with f everywhere on S.

We can now describe the class of reward functions that we consider in this section.
Specifically, we consider rewards c : Y1 × Y2 × U1 × U2 such that for each y1 ∈ Y1

and y2 ∈ Y2, c(y1, y2, u1, u2) is multimodular in u1 and u2. To make this statement
precise, we have U1 = {1, . . . , |U1|} and U2 = {1, . . . , |U2|}. We refer to this class of
problems as TDP-M. We can make the following claim regarding the complexity of
TDP-M.

Theorem 4.2. The problem TDP-M is NP-hard.
Proof. The show this, we just need to show that every instance of TDP-2 is an

instance of TDP-M. This is done by showing any function f : {0, 1} × {0, 1} → R is
multimodular.

For some function f : {0, 1}×{0, 1} → R, suppose that f(0, 0)+f(1, 1) ≤ f(0, 1)+
f(1, 0). We can define the following piecewise affine continuation on [0, 1] × [0, 1]:

g(x1, x2) =

{
(1−x1−x2)f(0, 0) + x1f(1, 0) + x2f(0, 1) for x1 + x2 ≤ 1,

(1−x2)f(1, 0) + (1−x1)f(0, 1) + (x1+x2−1)f(1, 1) for x1 + x2 > 1.

Verifying that this function is concave on [0, 1] × [0, 1] is somewhat tedious, but
straightforward. If f(0, 0) + f(1, 1) > f(0, 1) + f(1, 0), then we define g as

g(x1, x2) =

{
(1 − x2)f(0, 0) + (x2 − x1)f(0, 1) + x1f(1, 1) for x1 ≤ x2,

(1 − x1)f(0, 0) + (x1 − x2)f(1, 0) + x2f(1, 1) for x1 > x2,

which is concave on [0, 1] × [0, 1].
Now that we have established that TDP-M is NP-hard, our goal is to show that

our algorithm has a tighter approximation ratio for these problems. To ensure the
tightest approximation ratio for this class of problems, we make one very minor change
to the algorithm.

Algorithm 4.3. Assume, without loss of generality, that |U2| ≥ |U1|.
1. Let γ1(y1) ∈ argmaxu1{

∑
u2

∑
y2

c(y1, y2, u1, u2)} for all y1 ∈ Y1.
2. Let γ2(y2) ∈ argmaxu2

{
∑

y1
c(y1, y2, γ1(y1), u2)} for all y2 ∈ Y2.

The only difference between this algorithm and Algorithm 3.1 is the order in
which the decision rules are computed. As we saw previously, the approximation
ratio depends on the number of decisions available to the decision rule which is com-
puted second. For the approximation ratio proven in Theorem 3.2, the quality of the
approximation degrades with the number of decisions. For the approximation ratio
proven in this section, the quality of the approximation improves with the number of
decisions.

Before proving approximation ratio for TDP-M, we first need to establish several
properties of multimodular functions of a single variable.

Lemma 4.4. A function f : Z → R is multimodular iff

f(x2) ≥
x3 − x2

x3 − x1
f(x1) +

x2 − x1

x3 − x1
f(x3)

for any x1 ≤ x2 ≤ x3.
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Proof. If the inequality is violated for some x1, x2, and x3, then clearly it is
violated for any g : R → R which coincides with f . Conversely, if the inequality holds
for all x1 ≤ x2 ≤ x3, then it’s easy to verify that the piecewise affine continuation of
f ,

g(x) = (�x	 − x)f(
x�) + (x− 
x�)f(�x	),

is concave. Here, 
x� denotes the largest integer less than or equal to x and �x	
denotes the smallest integer strictly greater than x.

When proving Theorem 3.2 in the previous section, we used the fact that the sum
of a set of nonnegative numbers is an upper bound on the maximum of these numbers.
The key to obtaining a tighter approximation ratio for multimodular rewards is to
use the fact that the gap between these two quantities can be quite large when the
set of numbers corresponds to the values taken by a multimodular function. This is
stated precisely in the following theorem.

Theorem 4.5. Suppose f : {1, . . . , N} → R+ is multimodular. Then

N∑
i=1

f(i) ≥ N − 1

2
f(j)

for all j ∈ {1, . . . , N}.
Proof. Let k be such that f(k) ≥ f(j) for all j ∈ {1, . . . , N}. We just need to

show that
∑N

i=1 f(i) ≥ N−1
2 f(k). Since f(1) ≥ 0 and f(N) ≥ 0, Lemma 4.4 gives

f(i) ≥ i− 1

k − 1
f(k) for all 1 ≤ i ≤ k,

f(i) ≥ N − i

N − k
f(k) for all k ≤ i ≤ N.

If k = 1 or k = N , we just have one of these inequalities for all 1 ≤ i ≤ N . Using
these inequalities,

N∑
i=1

f(i) ≥
k∑

i=1

i− 1

k − 1
f(k) +

N∑
k+1

N − i

N − k
f(k)

=
1

k − 1

(
1

2
k(k − 1)

)
f(k) +

1

N − k

(
1

2
(N − k)(N − k − 1)

)
f(k)

=
N − 1

2
f(k).

We can now prove the main result of this section.
Theorem 4.6. For TDP-M, Algorithm 4.3 produces a policy γ1, γ2 with value

satisfying

J(γ1, γ2) ≥
(

1

2
− 1

2 max{|U1|, |U2|}

)
J(γ∗

1 , γ
∗
2 ).

Proof. Without any loss of generality, here we will assume that |U2| ≥ |U1|. In
the proof of Theorem 3.2, we use the fact that∑

u2

c(y1, y2, γ
∗
1 (y1), u2) ≥ c(y1, y2, γ

∗
1 (y1), γ

∗
2 (y2)).(4.1)
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For any fixed y1 and y2, c(y1, y2, γ
∗
1 (y1), u2) is multimodular in u2. Therefore, we can

use Theorem 4.5 to strengthen inequality (4.1) to

∑
u2

c(y1, y2, γ
∗
1 (y1), u2) ≥

|U2| − 1

2
c(y1, y2, γ

∗
1 (y1), γ

∗
2 (y2)).

This gives us the bound

∑
y1

∑
y2

c(y1, y2, γ1(y1), γ2(y2)) ≥
∑
y2

(
1

|U2|
∑
u2

∑
y1

c(y1, y2, γ1(y1), u2)

)

≥ 1

|U2|
∑
y1

∑
y2

(∑
u2

c(y1, y2, γ
∗
1 (y1), u2)

)

≥
(

1

2
− 1

2|U2|

)∑
y1

∑
y2

c(y1, y2, γ
∗
1 (y1), γ

∗
2 (y2)).

Note that this bound is not tight for the case where |U1| = 2 or |U2| = 2. This
is simply because the bound proven in Theorem 4.4 is trivial and never tight when
N = 2. Of course in this the case, the bound proven in Theorem 3.2 still holds and
is tight. With this in mind, the bound in Theorem 4.6 says that the approximation
ratio for any instance of TDP-M is at least 1/3, and approaches 1/2 as the sizes of
U1 and U2 increase.

5. Conclusions. In this paper we presented an approximation algorithm for the
discrete team decision problem [8, 9]. We focused on problems involving two decision
makers. For the general discrete team decision problem, the approximation ratio for
our algorithm depends on the number of actions available to each decision maker.
For the case when at least one decision maker chooses between two actions, which is
still NP-hard, we have an approximation ratio of 1/2. We then considered a special
case of the discrete team decision problem which can be thought of as the discrete
counterpart of the problems considered by Radner [6]. We show that this special
class of problems is still NP-hard, but the approximation ratio for our algorithm is
significantly tighter on these problems.
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