论文

ON B-SPLINE M-ESTIMATORS IN A SEMIPARAMETRIC REGRESSION MODEL

SHI Peide

Department of Probability and Statistics, Peking University, Beijng 100871, China

收稿日期 修回日期 网络版发布日期 接受日期

摘要 This paper deals with M-estimators for a semiparametric regression model $Y=X^{t}\beta_{0} + g_{0}(T) + e$, where Y is real-valued, T ranges over a nondegenerate compact interval, X $\in \mathbb{R}^{d}$, e is a random error, β_{0} is a d-vector of parameters to be estimated, and go is an unknown smooth function whose mth derivative function satisfies a Holder condition with exponent $\gamma \in (0, 1]$. A B-spline is taken to approximate g_{0} , the M - estimators of β and go are defined, and their convergence rates are investigated. A Monte Carlo study is carried out. It is shown that when the random errors are normally distributed the M-estimators are as good as least square esthoators; however, when the random errors are drawn from a symmetrically contaminated normal distribution the M-estimators seem acceptable but the least Square estimators behave poorly. It is proved that the B-spline M-estimators of g_{0} attain the convergence rate as that of the optimal global rate of convergence for nonparametric regression, and the M-estimators of β_{0} attain the convergence rate n-1/2 under som conditions.

关键词 <u>semiparametric regression model</u>, <u>M-estim</u> 分类号

ON B-SPLINE M-ESTIMATORS IN A SEMIPARAMETRIC REGRESSION MODEL

SHI Peide

Department of Probability and Statistics, Peking University, Beijng 100871, China

Abstract This paper deals with M-estimators for a semiparametric regression model $Y=X^{t}\beta_{-}0 + g_{-}0(T) + e$, where Y is real-valued, T ranges over a nondegenerate compact interval, $X \in R^{d}$, e is a random error, $\beta_{-}0$ is a d-vector of parameters to be estimated, and go is an unknown smooth function whose mth derivative function satisfies a Holder condition with exponent $\gamma \in (0, 1]$. A B-spline is taken to approximate $g_{-}0$, the M - estimators of β and go are defined, and their convergence rates are investigated. A Monte Carlo study is carried out. It is shown that when the random errors are normally distributed the M-estimators are as good as least square esthoators; however, when the random errors are drawn from a symmetrically contaminated normal distribution the M-estimators are superior to least square estmators; and when the random errors are distributed as Cauchy distribution the M-edimators seem acceptable but the least Square estimators behave poorly. It is proved that the B-spline M-estimators of $g_{-}0$ attain the convergence rate as that of the optimal global rate of convergence for nonparametric regression, and the M-estimators of $\beta_{-}0$ attain the convergence rate n-1/2 under some conditions.

Key words <u>semiparametric regression model</u> <u>M-estimator</u> <u>optical global rate of convergence</u> <u>B-</u> <u>spline function</u>

DOI:

	扩展功能
	本文信息
	Supporting info
	▶ <u>PDF</u> (0KB)
	▶ <u>[HTML全文]</u> (0KB)
	▶ 参考文献
	服务与反馈
	▶ <u>把本文推荐给朋友</u>
is	▶ <u>加入我的书架</u>
rs	▶ <u>加入引用管理器</u>
	▶ <u>复制索引</u>
	▶ <u>Email Alert</u>
n en	▶ <u>文章反馈</u>
al me	▶ <u>浏览反馈信息</u>
	相关信息
	▶ <u>本刊中 包含 "semiparametric</u>
	<u>regression model</u> , M-estim"的 相关文章
	▶本文作者相关文章
	• <u>SHI Peide</u>