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Show by a theoretical and experimental argument that potassium atoms possess 
a permanent electric dipole moment based on the orbital angular momentum 

Pei-Lin You     
Institute of Quantum Electronics, Guangdong Ocean University Zhanjiang 524025 China. 

The permanent electric dipole moment (EDM) of the ground state of potassium has been found by 
measuring the electric susceptibility. We find dK=[1.58±0.19(stat)±0.13(syst)]×10-8e.cm and the induced 
EDM, dind < 1.5×10-16e.cm, can be neglected. The experimental K material with purity 99.95 % is supplied 
by Strem Chemicals Co. USA. This paper shows that the permanent EDM is based on the orbital angular 
momentum (where the spin is irrelevant), and neither space inversion nor time reversal is a symmetry 
operation for an alkali atom. In fact, the famous Runge-Lenz vector M is simply the permanent EDM vector 
of an alkali atom. As early as 1926, W. Pauli calculated the energy levels of the hydrogen using the vector 
M. Therefore, our work may fall into the category of the most exciting discoveries during the past few 
decades. 
PACS numbers: 32.10.Dk,11.30.Er, 32.60.+i, 03.65.Sq  

 
1. Introduction   The existence of a finite permanent electric dipole moment (EDM) of an atom or particle would 
violate time reversal symmetry (T), and would also imply violation of the combined charge conjugation and parity 
symmetry (CP) through the CPT theorem [1-4]. The currently accepted Standard Model of Particle Physics predicts 
that the dipole moments of an atom are unobservable; therefore, EDM experiments are an ideal probe for new 
physics beyond the Standard Model. Experiments to search for an EDM of an atom began many decades ago. As 
early as 1968, M. C. Weisskopf, the Director of CERN, reported an upper limit to the EDM of the cesium atom 
(-dCs< 3.7× 10 –22e.cm) [4]. “The importance of these experiments lies in the fact the observation of an EDM in an 
atomic system of well-defined angular momentum would be direct evidence for a violation of both parity and 
time-reversal invariance.” From then on, many brilliant physicists have pursued the subject. Experimental searches 
for EDMs can be divided into three categories: search for the neutron EDM(the new result is dn< 2.9×10 –26 e.cm)[2], 

search for the electron EDM utilizing paramagnetic atoms, the most sensitive of which is done with Tl atoms(the 
result is de=[1.8±1.2 (stat)±1.0 (syst)]×10 –27 e.cm) [3], and search for the EDM of diamagnetic atoms, the most 
sensitive of which is done with 199Hg(the new result is d(Hg)=[0.49±1.29(stat)±0.76 (syst)] × 10-29 e.cm) [1]. In all 
experiments, the microcosmic Larmor precession frequency of individual particles were measured based on nuclear 
spin or electron spin. The search for an EDM involves measuring the precession frequency of the particle in parallel 
electric and magnetic fields and looking for a change of this frequency when the direction of E is reversed relative 
to that of B. Despite the relentless search for a non-zero EDM, lasting more than 50 years, no conclusive results 
have been obtained [1-4]. 

Up to now, physicists commonly believed that if a particle has spin zero (or the spin is irrelevant), the permanent 
EDM of the particle must be zero [1-4,13]. In fact, the idea is an untested hypothesis that deserves exhaustive 
examination. In 2002 we reported a lower limit to the permanent EDM of an Rb atom by measuring the electric 
susceptibility, dRb≥8.6×10 –9 e.cm[5]. If nearly all the dipoles in a gas turn toward the direction of the external field, 
this effect is called the saturation polarisation. In 2004 we reported that the saturation polarisation of Rb vapour was 
observed [15]. After nine years of intense research, this paper will report that the saturation polarisation of K vapour 
was observed and the permanent EDM of a K atom has been measured accurately. The main experimental 
apparatus, two cylindrical capacitors containing K vapour, were made in the Department of Physics of Peking 
University, and above results repeated in their laboratory. 

2. Prove the ground state alkali atom may have a permanent EDM based on the orbital angular momentum. 
It is well known that the ground state of hydrogen is non-polar atom (d=0). The linear Stark effect shows that a 

hydrogen atom of the first excited state has large permanent EDM, dH =3e a0=1.59×10-8e.cm (a0 is the Bohr radius) 

[6]. L.D. Landay once stated that “The presence of the linear effect means that, in the unperturbed state, the 
hydrogen atom has a dipole moment” [7]. Therefore, the excited state of hydrogen is polar atom. We notice that the 
permanent EDM of the Hg atom based on nuclear or electron spin is only 10-29 e.cm. It is apparent that such a large 
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permanent hydrogen EDM cannot be based on nuclear spin or electron spin! Its radius, rH = 4 a0 =2.12×10-8 cm, is 
almost the same as 199Hg (rHg =1.51×10-8 cm) [8], but their EDMs differ by twenty-one orders of magnitude! In 
modern quantum theory, the electrons are described as charge clouds rather than as orbiting particles. How do we 
explain this inconceivable discrepancy? The existing theory cannot answer the problem! However, a hydrogen or 
hydrogen-like atom may have a large permanent EDM according to the Sommerfeld theory (1916). In this theory, 
the electron moves along a quantization elliptic orbit. We can draw a straight line perpendicular to the major axis of 
the elliptic orbit through the nucleus in the orbital plane. The line divides the elliptic orbit into two parts that differ 
in size. According Kepler’s law of equal areas, the average distance between the moving electron and the nucleus is 
larger and the electron remains in the larger area longer than in the smaller area. As a result, the time-averaged value 
of the electric dipole moment over a period is nonzero for the atom. 

We investigate the classical Kepler problem. The Hamiltonian in relative coordinates is[6,9] 
                   H=p2 /2µ - к/r                                                 (1)  

where µ is the reduced mass and к=Ze2 for the hydrogen-like atom. The bound solution of the classical orbit 
problem is an ellipse with semi-major axis a  that is equal to half the distance from perihelion P to aphelion A, and 
with eccentricity ε that is equal to (a2 – b2)1/2/a, where b is the semi-minor axis. The total energy E and the orbital 
angular momentum L= r × p are two constants of the motion. The rotational symmetry of H is not enough to require 
the orbit to be closed. This fact suggests that there is some quantity, other than H and L, that is a constant of the 
motion and that can be used to characterize the orientation of the major axis in the orbital plane. Therefore, we look 
for a constant vector M which we expect to lie along the major axis, pointing from the focus O of the ellipse to P. 
Such a vector has been known for a long time and is called the Runge-Lenz vector M or eccentricity vector Γ [6,10].  

                M = p×L /µ –к r/r    or    Γ= M/ к=p×L /кµ –r/r                     (2) 
It is easily seen to be a constant of the motion, to have magnitude кε (or ε) directed from O to perihelion P [9,10].  

                M = кε rp/rp              or    Γ= ε rp/rp                                               (3) 
where rp is the vector directed from O to perihelion P. To treat the hydrogen atom quantum mechanically, we must 
to replace the classical functions by operators, which can be done easily for r, p, and L. Because p×L ≠ -L×p,  Eq. 
(2) does not define a Hermitian quantity. We therefore redefine M as a symmetrized expression [6]: 

               M = (p×L - L×p )/2µ –к r/r                                           (4) 
By considering the commutation relations for r and p we can show that  

          [M, H]=0,    L•M=M•L=0,      M2= 2H(L2+ħ2) /µ + к2                      (5) 
One of the world’s greatest theoretical physicists, Wolfgang Pauli calculated the energy levels of the hydrogen 

atom in 1926 using Eq. (4) and (5): E= -µк2/2n2ħ2. Pauli’s approach is equivalent to regarding the three components 
of M as generators of some infinitesimal transformations [6].  

On the other hand, J.J. Mestayer et al demonstrated a protocol to create localised wave packets of potassium atoms 
in 2008. “This figure shows a typical classical trajectory of an electron in a highly elliptical orbit oriented along the x 
axis when potassium atoms are suddenly exposed to the transverse field.” [ 11]  

In quantum mechanics, alkali atoms with only one valence electron in the outermost shell can be described as 
hydrogen-like atoms.[ 12] The quantum numbers of the ground state of alkali atoms are n≥2 rather than n=1(this is 2 
for Li, 3 for Na, 4 for K, etc.), as the excited state in hydrogen. 

L.I. Schiff wrote that “A charged particle with spin operator S will possess an electric dipole moment operator 
d=µS, where µ is a numerical constant” [6]. In a similar way, a ground state alkali atom with the operator M will 
possess a permanent EDM operator:  

d = γ M= e r      or    d = γ Γ/к= e r                              (6) 
where γ =r/Zeε is a constant, and r is a constant vector pointing from the moving centre of the valence electron to 
the nucleus and in the same direction as rp. Obviously, if a particle has no spin (or the spin is irrelevant), the 
particle may have a permanent EDM based on the orbital angular momentum L. The Hamiltonian for this particle 
in any electric field E contains the interaction term - dE.  
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The Runge-Lenz vector M or eccentricity vector Γ—is essentially, the permanent EDM vector of an alkali 
atom. This statement may fall into the category of the most exciting discoveries during the past few decades. 
3. Show that neither space inversion nor time reversal is a symmetry operation for an alkali atom  
  The reversal in time of a state represented by the wave function Ψα changes it into Ψα′, which develops in 
accordance with the opposite sense of progression of time. In this new state, the signs of momenta and angular 
momenta are reversed, but other quantities are unchanged. Time reversal is described by a time-independent 
operator O(T), which is defined by the equation 
                     O(T) Ψα(r,t)= Ψα′ (r,t)                                            (7) 

It is plausible to expect that the norms of states and the absolute value of the inner products of two states are 
unchanged by time reversal. We therefore assume that O(T) is antiunitary and write it in the form[6,9,13]. 
                     O(T) =UK                                                      (8) 
where the complex conjugation operator K is by definition: KΨ=Ψ*, U is unitary and O(T) O(T) 

-1= O(T) 
-1 O(T)  

=1. Note that J=L+S, where L, S, and J are the orbital, spin and total angular momentum operator, respectively.  
For a zero angular momentum particle:  U=1,         O(T) Ψ(r,t)= Ψ*(r, -t)                   (9) 
For a particle with angular momentum:  

U=exp(-iπJy/ħ),      O(T) Ψ(r,t)= exp(-iπJy/ħ)Ψ*(r, -t)= UR(π) Ψ(r,t)                   (10) 
where UR(π) is the rotation operator and exp(-iπJy/ħ) is a unitary transformation that rotates J through π radians about 
the y axis and thus, transforms Jx into –Jx and Jz into -Jz. When dealing with J, we shall for definiteness always 
choose a representation in which J2 and Jz are diagonal. When a particle has no spin (or the spin is irrelevant), S=0, 
and J=L. Because d = er and the operator r is unchanged under time reversal, it follows that d satisfies [13]   
                    O(T)dO(T)-1= +d                                                   (11) 
  Let Φm denote the state of the particle and its projection of the angular momentum on the z-axis equal to m. 
Now consider the expectation value of this equation with respect to the state O(T)Φm. Noticing that  (O(T) χ, 
O(T) φ)t = (χ, φ)*-t =( φ, χ )-t 

[13], and the Hermitian of the operator d: (Φm, dΦm) = (dΦm, Φm), we have  
(O(T)Φm, dO(T)Φm)=(O(T)Φm,O(T)dO(T)-1O(T)Φm)=(O(T)Φm,O(T)dΦm)= (dΦm, Φm) =(Φm, dΦm)   (12) 

For a particle with angular momentum, equation (10) is the condition the operator O(T) must satisfy under time 
reflection, i.e. O(T) acting on a state has the same effect as a rotation by π[13]. Therefore we have  
      (O(T)Φm, dO(T)Φm)=(UR(π)Φm, dUR(π)Φm)= (Φm, UR(π) -1dUR(π)Φm)= - (Φm , dΦm),           (13) 
because a rotation by π changes the sign of the vector operator d[13]. Thus 
                  (Φm, dΦm) = - (Φm, dΦm) = 0                                            (14) 
Evidently, time-reversal invariant leads directly to the vanishing of the permanent EDM of any atom or particle. 
Finally, we note that d is a polar vector that does change sign on space inversion (parity transformation). The 
interaction (- dE) changes sign when r is replaced by (-r), and the transformation affected the Hamiltonian of the 
atomic system. Thus we have clearly proven that neither space inversion nor time reversal are symmetry operations 
for an alkali atom with the operator d, even when no external electric field is present(see Ref.[6] P243,problems19.) 
4. How can we separate the permanent and induced EDM of an atom or molecule? 

We can explain the magnitude of dielectric effects based on simple models of the atomic or molecular dipole 
moments. The electric susceptibility is defined as χe =C/C0–1, where C0 is the vacuum capacitance and C is the 
capacitance of the capacitor filled with the material. When atoms are placed in an electric field, they become polarised, 
acquiring induced electric dipole moments in the direction of the field. On the other hand, many molecules do have 
permanent EDM, called polar molecules. Note that the electric susceptibility caused by the orientation of polar 
molecules is inversely proportional to the absolute temperature, whereas the induced electric susceptibility due to the 
distortion of electronic motion in atoms or molecules is temperature independent. This difference in temperature 
dependence offers a means of separating the two types of EDM experimentally. 

In Classical Electrodynamics by J. D. Jackson, the electric susceptibility is plotted against 1/T for polar and 
non-polar substances, respectively. The plot is a horizontal line for non-polar substance (see Fig.1) [14].  
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For non-polar substances          χe =Nα=N dint /ε  o  E=A                      (15) 
where N is the number density of atoms or molecules, α is the atomic or molecular polarisability, dint is the 
induced EDM of an atom or molecule, ε  o   is the permittivity of free space, E is the external electric field, and  
the constant A is independent of the temperature T. For polar substances the plot is an oblique line. 

For polar substances              χe = A+ N d0
2 /3kT ε  o  =A+B/T                (16) 

where d0 is the permanent EDM of a molecule, k is the Boltzmann constant, and the slope B=Ndo
2 /3kε o      is 

constant when N keeps a fixed density[14]. If K atom is polar and has a permanent EDM, a temperature 
dependence of the form χe =A+B/T should be expected when measuring the capacitance. 
4. Experimental method and result    

The first experiment: involves measuring the capacitance of K vapor under the condition of the saturated vapor 
pressure. The experimental apparatus is a closed glass container resembling a Dewar flask in shape. Its length is 
L1=26.0cm. The external and internal diameters of the container are D1=80.8mm and D2=56.8mm. The external 
and internal surfaces of the container are plated with silver, shown by a, and b, respectively, in Fig.1. These two 
silver layers constitute the cylindrical capacitor. The thickness of the glass wall is h=1.5 mm and the separation 
H1=9.0 mm. This capacitor is connected in series by two capacitors. One is called C′ and contains the K vapor of 
thickness H1; the other is called C′′ and contains the glass medium of thickness 2h. The total capacitance C is C = 
C′C′′/ (C′+C′′), where C′′ and C can be directly measured. The magnitude of capacitance is measured by a digital 
capacitance meter. The precision of the meter was 0.1 pF, the accuracy was 0.5% and the surveying voltage was 
V=1.2 V. When the container is empty, it is pumped to vacuum pressure P ≤10-8 Pa for 20 h to remove impurities. 
We measured the total capacitance C = 50.3 pF and C′′=1658 pF, and the vacuum capacitance C′0 =51.9 pF. Next, 
5g of K material with 0.9995 purity supplied by Strem Chemicals Co. USA, was put in the container. We put the 
capacitor into a temperature-control stove, raise the temperature of the stove very slowly and keep it at T1 =533K 
for 4 h. We measured the two capacitances (Ct =2270pF, and C′′=6610 pF), and the capacitance of K vapor (C′t 
=3457pF). The formula of saturated vapor pressure of K vapor is P=107.183-4434.3/T psi (533K≤T≤1033K), where 1 
psi=6894.8 Pa [8]. We obtain the saturated pressure of K vapor as P1=503.5Pa at T1=533K. From the ideal gas law, 
the density of K vapor was N1= P1/kT1 =6.84×1022 m-3. Because the surveying voltage V=1.2 V, the digital meter 
applied the external field only with E=V/H2=1.4V/cm. 

J. D. Jackson once stated that “For gases at NTP the number of molecules per cubic meter is N=2.7×1025m-3, 
so that their susceptibility should be of the order of χe≤10-3. Experimentally, typical values of the susceptibility 
are 0.00054 for air, 0.0072 for ammonia vapor, 0.007 for water vapor.” [13] Note that χe = C′t /C′0–1=65.6>>10-3 
for K vapor, and its density N1<< 2.7×1025 m-3. So the result exceeded all physicist’s expectation!  

The second experiment: involves measuring the capacitance of K vapor at various temperatures T under a 
fixed density. The apparatus was the same as the preceding experiment but the K vapor was at a fixed density N2. 
To control the quantity of K vapor, the container is connected to another small container containing K material by 
a glass tube from the top. These two containers are slowly heated to 503K in the stove for 3 h and the designed 
experimental container is sealed. The capacitance C of the capacitor was still measured by the digital meter and 
its vacuum capacitance was C20=47.2 pF. Its length is L2=23.0 cm and the plate separation is H2=7.5 mm. The 
capacitance of K vapor has been measured at several different temperature, chosen such that the density N2 of K 
vapor remained fixed. We obtain χe =A+B/T≈B/T, where the intercept A≈0 and the slope of the line B=190±4(K). 
The experimental results are shown in Fig.2.  

The third experiment: involves measuring the capacitance of K vapor at various voltages (V) under the fixed 
density N2 and a fixed temperature T3=303K[15]. The apparatus was the same as in the second experiment, C 30 = 
C20=47.2 pF. The measuring method is shown in Fig.3. C was the capacitor filled with K vapor to be measured 
and Cd =520pF was used as a standard capacitor. Two signals Vc(t)=Vco cosωt and Vs(t)=Vsocosωt were measured 
by a two channel digital real-time oscilloscope (supply by Tektronix TDS 210 USA). The two signals had the 
same frequency and always the same phase at different voltages. From Fig.3, we have (Vs-Vc)/Vc=C/Cd and 
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C=(Vso/Vco -1)Cd. In this experiment, Vso  could be adjusted from zero to 800 V. When V1=Vco≤0.4 V, C1=232 pF 
(χe=3.915) is approximately constant.

 With increasing voltage, the capacitance decreases gradually. When 
V2=Vco=400 V, C2=53.0 pF (χe=0.1229 ) and approaches saturation. The χe-V curve showed that the saturation 
polarization of the K vapor is obvious when E≥V2/ H2=5.4×104V/m and the field intensity at midpoint of the 
curve is Emid ≈10V/cm(see Fig.4). 
5. Theory and interpretation   The local field acting on a molecule in a gas is almost the same as the external 
field E[14]. The electric susceptibility of a gaseous polar dielectric is[16]    

χe = Nα+ N do L(a)/ ε   0      E                                    (17) 
where a = do E/kT, do is EDM of a molecule, α is the molecule polarizability. L(a) = [(e a + e –a ) / ( e a – e –a )] – 
1/a is called the Langevin function, it is the percentage of polar molecules or atoms lined up with the field. Note 
that L(a)≈a/3 when a<<1, and L(a)≈1 when a>>1 [16]. Next, this equation is applied to K atoms. Because the 
atomic polarizability of K atoms is α=43.4×10-30 m3[17], the number density of K atoms N<7×1022 m-3 and the 
induced susceptibility χe =A=Nα<3.1×10-6 can be neglected. In addition, the induced dipole moment of K atoms 
is dind =α ε 0                    E[16], because E< 6×104V/m in the three experiments, then dind < 2.3×10-35 C.m=1.5×10-16 e.cm can be 
neglected. From Eq. (17) we obtain χe = Nd L(a)/ ε    0 E, where d is the EDM of an K atom and N is the density of 
K vapor. Note that E=V/H and ε   0  =C0H/S, we obtain the polarization equation of K atoms  

C–C0 =βL(a)/a                                           (18)  
where β= S N d 2/kTH is a constant. From a=d E/kT= dV/kTH we obtain the formula of atomic permanent EDM 

datom =(C –C0 )V / L(a)SN                                  (19)  
In order to work out L(a) and a of the first experiment, note that in the third experiment when V1=0.4 V, a1 <<1 

and L(a1 )≈a1 /3. From Eq.(18): we obtain C1–C30=β/3 and β=554.4 pF. When V2=400 V, a2 >>1 and L(a2)≈1, we 
obtain C2–C30 = L(a2)β/a2. We work out a2 = 94.6, L(a2)=L(94.6)=0.9894. From a= d E/kT= dV/kTH, and  a/a2 

=VT2H2 /T1H1V2, we obtain a = 0.134 and L(a)=0.0447. L(a)=0.0447 means that only 4.47% of K atoms are lined 
up with the direction of the field in the first experiment.  

Notice that we deduced Eq.(19) from the formula of the parallel-plate capacitor ε   0         =C0 H/S, so the cylindrical 
capacitor must be regarded as an equivalent parallel-plate capacitor with the plate area S= C0 H/ε   0     . In the first 
experiment the equivalent plate area S1= C′0 H1/ε   0           =5.28×10-2 m2. Substituting the values: L(a), S1, V, N1 and 
C–Co = C′t –C′0 = (3405±10) pF, we work out  

dK =(C –Co )V / L(a) S1 N1 =2.531×10-29C.m= 1.582×10-8e.cm              (20) 
The statistical error of the measured value is ∆d1/d≤0.12. Considering all sources of systematic error ∆d2/d≤0.08, 
and the combined error is ∆d/d≤0.15. We obtain 

dK=[2.53±0.30(stat)±0.20(syst)]×10-29C.m = [1.58±0.19(stat )±0.13(syst)]×10-8e. cm    (21) 
From 1ev=kT, we get T=11594K. In the range of the three experiment 303K≤T≤533K, kT<<1ev, so the 

measured capacitance change (C′t –C′0 ) entirely comes from the contribution of the potassium ground state.  
6. Discussion    
A. If K atom has a large EDM, why has not been observed by other physicists during the past few 

decades?  This is an interesting question. The third experiment showed that the saturation polarization of K 
vapor is obvious when an external electric field E≥5.4×102V/cm. When the saturation polarization occurred, 
nearly all K atoms (more than 98.9 %) are lined up with the electric field, and the capacitance of K vapor C ≈ 
C0(C0 is the vacuum capacitance)! So only under the very weak field, E≤ Emid =10V/cm (Emid is the field intensity at 
midpoint), the large EDM of K atom can be observed. Our experimental effect is very strong because the digital 
capacitance meter only with E=V/H≤ 1.6V/cm.  

Regrettably, nearly all scientists in this field disregard the very important problem. The result described 
by S. A. Murthy et al. is a typical example [18]. Their result shows that the EDM of a Cs atom is vanishing : dCs= 
(-1.8±6.7(stat)±1.8 (syst))×10-24e. cm. We notice that Cs atoms are placed in an external electric field, the field 
intensity E=V/H=4×103V/cm>>10V/cm. The calculation showed that a=694 and L(a)≈0.9986, nearly all the Cs 
atoms (more than 99.8 %) turns toward the direction of the field, and χe≈0 or the capacitance of the Cs vapor is the 
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same as vacuum! So the large EDM of Cs atom has not been observed in their experiment.  
B. If K atom has a large EDM, why the linear Stark effect has not been observed? This is a challenging 
question. Let us first treat the linear Stark shifts of the hydrogen (n=2). Notice that the fine structure of the 
hydrogen (n=2) is only 0.33 cm-1 for the Hα lines of the Balmer series, where λ = 656.3 nm, and the splitting is 
only ∆λ = 0.33×(656.3×10-7)2 =0.014 nm, therefore the fine structure is difficult to observe [19]. The linear Stark 
shift of the energy levels is proportional to the field strength: ∆W=dH.E=1.59×10-8 E e.cm. When E=105V/cm, 
∆W=1.59×10-3 eV, this corresponds to a wavenumber of 12.8 cm-1. So the linear Stark shifts is ∆λ =∆Wλ 2/hc = 
12.8×(656.3×10-7)2 =0.55 nm. It is so large, in fact, that the Stark shift of the lines of the hydrogen is easily 
observed [19]. However, the most field strength for K atoms is Emax=5.4×102V/cm, if K atom has the EDM 
dK=1.58×10-8 e.cm, and the most splitting of the energy levels of K atoms ∆Wmax= dK Emax= 8.53×10-6 eV. 
This corresponds to a wavenumber of 6.87×10-2 cm-1. On the other hand, the observed values for a line pair of 
the first primary series of K atom (Z=19, n=4) are λ 1=769.90 nm and λ 2=766.49 nm[8]. So the most linear 
Stark shift of K atoms is only ∆λ = ∆W (λ 1 +λ 2)2 / 4hc = 0.0041nm. It is so small, in fact, that a direct 
observation of the linear Stark shifts of K atom is not possible! 

Accurate measurements of the EDM of cesium, rubidium and sodium atoms in the ground state have been 
carried out, and similar results have been obtained [20-22].  
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Fig.3 The diagram shows the measuring
method. C is the capacitor filled with K 
vapor to be measured and Cd=520pF is a 
standard capacitor, where Vs(t) = Vso cosωt
and Vc(t) = Vco cosωt. 

 

Fig.4 The experimental curve shows that the
saturation polarization effect of the K vapor
is obvious when E≥5.4×102V/cm, and Emid ≈
10V/cm at midpoint of the curve.   

Fig.1 This is the longitudinal section of the
apparatus. It is a cylindrical glass capacitor
filled with K vapor, where the density N1 =
6.84×1022m-3 when the saturated pressure
of K vapor is kept at T1=533K. 

  
 

Fig.2 The curve showed that χe of K vapor
varies inversely proportional to the
absolute temperature T: χe = A + B/T,
where the slope B=190±4.0 (K) and the
intercept A≈0. 


