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We have considered the flat FRW model of the universe which is filled with the combination
of dark matter and dark energy. Here we have considered two types of dark energy models: (i)
Generalized holographic and (ii) generalized Ricci dark energies. The general descriptions of first
law and generalized second law (GSL) of thermodynamics have studied on the apparent horizon,
particle horizon and event horizon of the universe. We have shown that the first law and GSL
are always valid on apparent horizon and first law can not be satisfied on the particle and event
horizons in Einstein’s gravity. These results are always true for any types of dark energy models
i.e., these results do not depend on the dark energy models in Einstein’s gravity. But the GSL
completely depends on the choices of dark energy models in Einstein’s gravity. Here we have
discussed the validity of GSL in Generalized holographic and generalized Ricci dark energy models.
On the particle horizon GSL may be satisfied but on the event horizon the GSL can not be satisfied
for both the dark energy models. Also we have considered the Generalized holographic dark energy
and generalized Ricci dark energy as the original holographic dark energy, so in this situation we
have calculated the expression of the radius of the horizon L. On this horizon, we have shown that
the first law can not be satisfied. Finally, on the horizon of radius L, we have found that the GSL
can not be satisfied for both the dark energy models.

I. INTRODUCTION

Recent astrophysical data from distant Ia supernovae observations [1, 2] show that the current Universe is
not only expanding, but also it is accelerating due to some kind of negative-pressure form of matter known
as dark energy [3, 4]. This mysterious fluid is believed to dominate over the matter content of the Universe
by 70 % and to have enough negative pressure as to drive present day acceleration. However, the nature of
dark energy is still unknown, and people have proposed some candidates to describe it. There are different
candidates to play the role of the dark energy. The most traditional candidate is a non-vanishing cosmological
constant which can also be though of as a perfect fluid satisfying the equation of state p = −ρ. The next simple
model proposed for dark energy is the quintessence [5] which is a dynamical scalar field which slowly rolls
down in a at enough potential. There are different alternative theories for the dynamical dark energy scenario
which have been proposed by people to interpret the accelerating universe like K-essence [6], tachyonic field
[7], Chaplygin gas [8], phantom field [9], etc. Next we will discuss another two types of dark energy candidates
i.e., holographic and Ricci dark energies.

In quantum field theory a short distance (UV) cut-off is related to a long distance (IR) cut-off L due to
the limit set by formation of a black hole, which results in an upper bound on the zero-point energy density
[10]. It is to be noted that the size L should not exceed the mass of a black hole with the same size [11], i.e.
L3Λ4 ≤ LM2

p where Λ is the ultraviolet (UV) cut-off of the effective quantum field theory. The largest IR cutoff
L is chosen by saturating the inequality, so that the holographic dark energy density [12] may be defined by

ρΛ = 3c2M2
pL

−2 where Mp = 1/
√
8πG is the reduced Planck mass and c is a numerical constant characterizing

all of the uncertainties of the theory, whose value can only be determined by observations. On the basis of
the holographic principle proposed by [13] several others have studied holographic model for dark energy [14].
Employment of Friedman equation ρ = 3M2

pH
2 where ρ is the total energy density and taking L = H−1 one

can find ρm = 3(1 − c2)M2
pH

2. Thus either ρm or ρΛ behaves like H2. If we take L as the size of the current

universe, say, the Hubble radius 1

H
then the dark energy density will be close to the observational result. There

are other type of dark energy i.e., Ricci dark energy, which is a kind of holographic dark energy [15] taking the
square root of the inverse Ricci scalar as its infrared cutoff and this model is also phenomenologically viable.
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Gao et al [16] proposed the dark energy density proportional to the Ricci scalar R i.e., ρX ∝ R. This model
works fairly well in fitting the observational data, and it could also help to understand the coincidence problem.
There are several works on this Ricci dark energy model [17].

Here we shall consider two types of dark energy models: (i) generalized holographic and (ii) generalized Ricci
dark energy models [18]. In Section II, we have found some solutions if the universe is filled with dark matter
and generalized holographic/Ricci dark energy. General prescriptions of first law and GSL of thermodynamics
have been presented in section III. We have shown that the first law and GSL are always valid on apparent
horizon and first law can not be satisfied on the particle and event horizons in Einstein’s gravity. These
results are always true for any types of dark energy models i.e., these results do not depend on the dark
energy models in Einstein’s gravity. But the GSL completely depends on the choices of dark energy models
in Einstein’s gravity. There are several works on the validity of GSL on the particle and event horizons in
various dark energy models [19, 20, 21]. Here we shall discuss the validity of GSL in Generalized holographic
and generalized Ricci dark energy models in section IV. Also if we consider the generalized holographic dark
energy and generalized Ricci dark energy as the original holographic dark energy, then our aim is to check the
validity of laws of thermodynamics on the horizon of radius L. Some conclusions have been drawn in last section.

II. GENERALIZED HOLOGRAPHIC AND RICCI DARK ENERGY MODELS

The Einstein’s field equations for homogeneous, isotropic and flat FRW universe are given by

H2 =
8π

3
ρ (1)

and

Ḣ = −4π(ρ+ p) (2)

where H(= ȧ
a
) is the Hubble parameter (choosing G = c = 1) and ρ and p be the energy density and pressure

of the fluid respectively. The conservation equation is given by

ρ̇+ 3H(ρ+ p) = 0 (3)

Now let us consider the fluid is a combination of dark matter and dark energy i.e., ρ = ρm + ρDE and
p = pm + pDE with pm = 0. Assuming there is no interaction between dark matter and dark energy, so they
are separately conserved. Thus the the conservation equation (3) becomes

ρ̇m + 3Hρm = 0 (4)

and

ρ̇DE + 3H(ρDE + pDE) = 0 (5)

From equation (4), we get the energy density of matter as

ρm = ρm0(1 + z)3 (6)

where ρm0 is an integration constant which gives the present value of the dark energy density and z = 1

a
− 1

is the redshift.

Recently, Xu et al [18] proposed two types of dark energy models, i.e., generalized holographic and generalized
Ricci dark energy models as follows:
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(i) Generalized Holographic Dark Energy Model (GHDEM): The energy density of GHDEM is given
by,

ρh = ρDE =
3c2

8π
H2f(R/H2) (7)

where c is a numerical constant and f(x) is a positive function defined as, f(x) = αx+(1−α), α is a constant.
Here R is the Ricci scalar and its expression for flat universe is given by

R = −6(Ḣ + 2H2) (8)

When α = 0 then f(x) = 1, we recover the energy densities of original holographic dark energy. Also when
α = 1 then f(x) = x, we recover the energy density of original Ricci dark energy.

So the energy density ρh becomes

ρh =
3c2

8π
[(1− 13α)H2 − 6αḢ ] (9)

Solving (1), (6) and (9) we get

H2 =
8πρm0(1 + z)3

3(1− c2 + 4αc2)
+H2

0 (1 + z)
c
2(13α−1)+1

3αc
2 (10)

where, H0 is an integration constant. Differentiating (10) w.r.t. t, we get

Ḣ = − 8πρm0(1 + z)3

2(1− c2 + 4αc2)
+

c2(1− 13α)− 1

6αc2
H2

0 (1 + z)
c
2(13α−1)+1

3αc
2 (11)

From equation (8), we obtain the Ricci scalar R as,

R = − 8πρm0(1 + z)3

(1− c2 + 4αc2)
− c2(1 − 7α)− 1

3αc2
H2

0 (1 + z)
c
2(13α−1)+1

3αc
2 (12)

So from equation (1) and (2), we can found the expressions for density ρh and pressure ph as,

ρh =
c2(1− 4α)ρm0(1 + z)3

(1− c2 + 4αc2)
+

3

8π
H2

0 (1 + z)
c
2(13α−1)+1

3αc
2 (13)

and

ph =
c2(4α− 1) + 1

24παc2
H2

0 (1 + z)
c
2(13α−1)+1

3αc
2 (14)

(ii) Generalized Ricci Dark Energy Model (GRDEM): The energy density of GRDEM is given by,

ρr =
3c2

8π
R g(H2/R) (15)

where g(y) is a positive function defined as, g(y) = βy+ (1− β), β is a constant. When β = 0 then g(y) = 1,
we recover the energy density of original Ricci dark energy. Also when β = 1 then g(y) = x, we recover the
energy density of original holographic dark energy.

Now comparing (7) and (15), we see that when β = 1 − α the generalized Ricci dark energy reduces to the
generalized holographic dark energy and vice versa. If we replace α by (1 − β) in equations (9) - (14), we
will get similar solutions for generalized Ricci dark energy model. Therefore, equations (9) - (14) are also the
solutions of generalized Ricci dark energy model with α = 1− β.
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III. FIRST LAW AND GENERALIZED SECOND LAW OF THERMODYNAMICS (GSL):
GENERAL PRESCRIPTION

We consider the FRW universe as a thermodynamical system with the horizon surface as a boundary of
the system. Here, we study the validity of first law and generalized second law (GSL) of thermodynamics on
apparent, particle and event horizons. To study the generalized second law (GSL) of thermodynamics through
the universe we deduce the expression for normal entropy using the Gibb’s law of thermodynamics [22]

TXdSI = pdV + d(EX) (16)

where, SI , p, V and EX are respectively entropy, pressure, volume and internal energy within the ap-
parent/particle/event horizon and TX is the temperature on the apparent horizon (X = A)/particle horizon
(X = P )/event horizon (X = E). Here the expression for internal energy can be written as EX = ρV . Now
the volume of the sphere is V = 4

3
πR3

X , where RX is the radius of the apparent horizon (RA)/particle horizon
(RP )/event horizon (RE) defined by [22] (see also our previous work [24])

RA =
1

H
, (17)

RP = a

∫ t

0

dt

a
=

1

1 + z

∫ ∞

z

dz

H
(18)

and

RE = a

∫ ∞

t

dt

a
=

1

1 + z

∫ z

−1

dz

H
(19)

which immediately give (after differentiation)

ṘP = HRP + 1 (20)

and

ṘE = HRE − 1 (21)

The temperature and the entropy on the apparent/particle/event horizon are also given by

TX =
1

2πRX

(22)

and

SX = πR2

X (23)

Next, we shall examine the validity of first law and GSL on the apparent horizon, particle horizon and event
horizon.

• First law on the apparent horizon, particle horizon and event horizon:

The amount of the energy crossing on the apparent/particle/event horizon is [23] given by

− dEX = 4πR3

XHTµνk
µkνdt = 4πR3

XH(ρ+ p)dt = −HḢR3

Xdt (24)

The first law of thermodynamics on the apparent/particle/event horizon is defined as follows:
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− dEX = TXdSX (25)

On the apparent horizon, we have (using (17), (22), (23) and (24))

− dEA = −HḢR3

Adt = − Ḣ

H2
dt (26)

and

TAdSA = −ṘAdt = − Ḣ

H2
dt (27)

The equations (26) and (27) imply,

− dEA = TAdSA (28)

This shows that the first law is always satisfied on the apparent horizon in Einstein’s gravity.

On the particle horizon, we have (using (18), (20), (22), (23) and (24))

− dEP = −HḢR3

P dt (29)

and

TPdSP = ṘP dt = (HRP + 1)dt (30)

From equations (29) and (30), we get

− dEP = TPdSP − (HḢR3

P +HRP + 1)dt (31)

The second term on the r.h.s. of (31) is time dependent, so this term cannot become zero during certain stage
of the evolution of the universe. Thus we may conclude that

− dEP 6= TPdSP (32)

So on the particle horizon, first law of thermodynamics can not be satisfied in Einstein’s gravity.

On the event horizon, we have (using (19), (21), (22), (23) and (24))

− dEE = −HḢR3

Edt (33)

and

TEdSE = ṘEdt = (HRE − 1)dt (34)

From equations (33) and (34), we get

− dEE = TEdSE − (HḢR3

E +HRE − 1)dt (35)

The second term on the r.h.s. is time dependent, so this term cannot become zero during certain stage of the
evolution of the universe. Thus we may conclude that



6

− dEE 6= TEdSE (36)

So on the event horizon, first law of thermodynamics can not be satisfied in Einstein’s gravity.

• GSL on the apparent horizon, particle horizon and event horizon:

The rate of change of internal entropy and total entropy are obtained as (from (16), (22) and (23))

ṠI =
ḢR2

X(HRX − ṘX)

TX

(37)

and

ṠI + ṠX = 2πRX [ḢR2

X(HRX − ṘX) + ṘX ] (38)

The GSL states that total entropy can not be decreased i.e.,

ṠI + ṠX ≥ 0 i.e., ḢR2

X(HRX − ṘX) + ṘX ≥ 0 (39)

On the apparent horizon, the rate of change of total entropy is (using (17) and (38))

ṠI + ṠA = 2πRA[ḢR2

A(HRA − ṘA) + ṘA] =
2πḢ2

H5
≥ 0 (40)

So GSL always satisfied on the apparent horizon in Einstein’s gravity.

On the particle horizon, the rate of change of total entropy is (using (20) and (38))

ṠI + ṠP = 2πRP [ḢR2

P (HRP − ṘP ) + ṘP ] = 2πRP

(

−ḢR2

P +HRP + 1
)

(41)

So GSL may be satisfied on the particle horizon if the following condition holds:

− ḢR2

P +HRP + 1 ≥ 0 (42)

For quintessence model, Ḣ < 0, so GSL always satisfied. But for phantom model, Ḣ > 0, GSL may or may
not be satisfied. For phantom crossing model, the GSL satisfied in the initial stage but in the late stage the
GSL may not be satisfied during evolution of the universe on the particle horizon.

On the event horizon, the rate of change of total entropy is (using (21) and (38))

ṠI + ṠE = 2πRE [ḢR2

E(HRE − ṘE) + ṘE ] = 2πRE

(

ḢR2

E +HRE − 1
)

(43)

So GSL may be satisfied on the event horizon if the following condition holds:

ḢR2

E +HRE − 1 ≥ 0 (44)

For quintessence model (Ḣ < 0) or phantom model Ḣ > 0 or phantom crossing model, we can not draw any
definite conclusion for validity of GSL on event horizon.

So from above discussions, we may conclude that the validity of first law is independent of dark energy
model in Einstein’s gravity on apparent horizon, particle horizon and event horizon and also validity of GSL is
independent of dark energy model in Einstein’s gravity on apparent horizon. But validity of GSL is completely
depends on the dark energy models in Einstein’s gravity on particle and event horizons. Hence in the next
section we shall discuss the validity of GSL on particle and event horizons for generalized holographic and
generalized Ricci dark energy models.
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Figs. 1 and 2 show the variations of (ṠI + ṠP ) and (ṠI + ṠE) respectively against redshift z for
c = .5, ρm0 = 1, α = .7, β = .7,H0 = 70. The dash line and non-dash line represent for the generalized holographic and

generalized Ricci dark energy models respectively.

IV. VALIDITY OF GSL ON PARTICLE AND EVENT HORIZONS IN GENERALIZED
HOLOGRAPHIC AND RICCI DARK ENERGY MODELS

In generalized holographic/Ricci dark energy model, the radii of the particle and event horizons in terms of
redshift z can be written as (using (10), (18) and (19))

RP =
1

1 + z

∫ ∞

z

dz

H
=

1

1 + z

∫ ∞

z

[

8πρm0(1 + z)3

3(1− c2 + 4αc2)
+H2

0 (1 + z)
c
2(13α−1)+1

3αc
2

]− 1
2

dz (45)

and

RE =
1

1 + z

∫ z

−1

dz

H
=

1

1 + z

∫ z

−1

[

8πρm0(1 + z)3

3(1− c2 + 4αc2)
+H2

0 (1 + z)
c
2(13α−1)+1

3αc
2

]− 1
2

dz (46)

On the particle horizon, the rate of change of total entropy is (using (10) and (41)) obtained as

ṠI + ṠP = 2πRP

(

−ḢR2

P +HRP + 1
)

= 2πRP

[{

8πρm0(1 + z)3

2(1− c2 + 4αc2)
− c2(1− 13α)− 1

6αc2
H2

0 (1 + z)
c
2(13α−1)+1

3αc
2

}

R2

P

+

{

8πρm0(1 + z)3

3(1− c2 + 4αc2)
+H2

0 (1 + z)
c
2(13α−1)+1

3αc
2

}

1
2

RP + 1

]

(47)

Also, on the event horizon, the rate of change of total entropy is (using (10) and (43)) obtained as
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ṠI + ṠE = 2πRE

(

ḢR2

E +HRE − 1
)

= 2πRE

[{

− 8πρm0(1 + z)3

2(1− c2 + 4αc2)
+

c2(1− 13α)− 1

6αc2
H2

0 (1 + z)
c
2(13α−1)+1

3αc
2

}

R2

E

+

{

8πρm0(1 + z)3

3(1− c2 + 4αc2)
+H2

0 (1 + z)
c
2(13α−1)+1

3αc
2

}

1
2

RE − 1

]

(48)

The rate of change of total entropies for particle and event horizons have drawn in figs. 1 and 2 respec-
tively. So Figs. 1 and 2 show the variations of (ṠI + ṠP ) and (ṠI + ṠE) respectively against redshift z for
c = .5, ρm0 = 1, α = .7, β = .7, H0 = 70. The dash line and non-dash line represent for the generalized
holographic and generalized Ricci dark energy models respectively. From the figures, we see that the GSL may
be satisfied on the particle horizon for generalized holographic and Ricci dark energy models, but on the event
horizon GSL can not be satisfied for these two dark energy models.

V. GENERALIZED HOLOGRAPHIC/RICCI AS AN ORIGINAL HOLOGRAPHIC DARK
ENERGY MODEL: THERMODYNAMICS

We consider here that the generalized holographic/Ricci dark energy model as an original holographic dark
energy model. For this purpose, we will compare the energy densities between generalized holographic/Ricci
and original holographic dark energies. Now if we compare the energy density of holographic dark energy which
is given in (7) with the original holographic model with energy density,

ρΛ =
3c2

8π
L−2 (49)

then we get,

L2 =
1

αR+ (1 − α)H2
(50)

which can be written in the simplified form (using (10) and (12)):

L2 =
3c2(1 − c2 + 4αc2)

8c2(1− 4α)πρm0(1 + z)3 + [2c2(1 + 2α) + 1](1− c2 + 4αc2)H2
0
(1 + z)

c
2(13α−1)+1

3αc
2

(51)

Here, we will try to apply the usual definition of the temperature and entropy on the horizon of radius L and
examine the validity of first and the second laws of thermodynamics. The temperature and the entropy on the
horizon are (similar to (22) and (23)) [25]

TL =
1

2πL
(52)

and

SL = πL2 (53)
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Fig. 3 shows the variation of (ṠI + ṠL) against redshift z for c = .5, ρm0 = 1, α = .7, β = .7, H0 = 70. The dash line and
non-dash line represent for the generalized holographic and generalized Ricci dark energy models respectively.

The amount of the energy crossing on the horizon is (same as (24)) given by [25]

− dEL = 4πL3HTµνk
µkνdt = 4πL3H(ρ+ p)dt = −HḢL3dt (54)

and from (52) and (53) we have

TLdSL = L̇dt (55)

From (54) and (55), we obtain the relation

− dEL = TLdSL − (HḢL3 + L̇)dt (56)

The second term on the r.h.s. is time dependent, so this term cannot become zero during certain stage of the
evolution of the universe. Thus we may conclude that

− dEL 6= TLdSL (57)

So on the horizon, first law of thermodynamics can not be satisfied in Einstein’s gravity.

Now on the horizon, the rate of change of total entropy is (similar to (38)) obtained as

ṠI + ṠL = 2πL[ḢL2(HL− L̇) + L̇] (58)

The GSL will be satisfied if

ḢL2(HL− L̇) + L̇ ≥ 0 (59)

For quintessence model (Ḣ < 0) or phantom model Ḣ > 0 or phantom crossing model, we can not draw any
definite conclusion for validity of GSL on the horizon. The validity is completely depends on the value of L in
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the dark energy model. In generalized holographic dark energy model, the rate of change of total entropy on
the horizon is calculated as (from (10), (11) and (58))

ṠI + ṠL = πH

[

ḢL2

(

2L2 + (1 + z)
dL2

dz

)

− (1 + z)
dL2

dz

]

= π

[

8πρm0(1 + z)3

3(1− c2 + 4αc2)
+H2

0 (1 + z)
c
2(13α−1)+1

3αc
2

]
1
2

×
[

−(1 + z)
dL2

dz
+

+

{

− 8πρm0(1 + z)3

2(1− c2 + 4αc2)
+

c2(1− 13α)− 1

6αc2
H2

0 (1 + z)
c
2(13α−1)+1

3αc
2

}

L2

(

2L2 + (1 + z)
dL2

dz

)]

(60)

where L2 has the expression given in equation (51). This is very complicated expression in z, so we need
graphical investigation. The rate of change of total entropy on the horizon of radius L have drawn in fig. 3.
So Fig. 3 shows the variation of (ṠI + ṠL) against redshift z for c = .5, ρm0 = 1, α = .7, β = .7, H0 = 70.
The dash line and non-dash line represent for the generalized holographic and generalized Ricci dark energy
models respectively. From the figure, we see that the GSL can not be satisfied on the horizon for generalized
holographic and Ricci dark energy models.

VI. DISCUSSIONS

We have considered the flat FRW model of the universe which is filled with the combination of dark matter
and dark energy. Here we have considered two types of dark energy models: (i) Generalized holographic and
(ii) generalized Ricci dark energies. If β = 1 − α, the generalized Ricci dark energy model is converted to
generalized holographic dark energy model. When α = 0 or β = 1, we recover the energy densities of original
holographic dark energy. Also when α = 1 or β = 0, we recover the energy density of original Ricci dark energy.
In these two models, the solutions have been found in terms of the redshift z. The general descriptions of
first law and generalized second law (GSL) of thermodynamics have studied on the apparent horizon, particle
horizon and event horizon of the universe. Here we have tried to apply the usual definition of the temperature
and entropy as that of the apparent horizon to the particle horizon and the cosmological event horizon and
examine the validity of first and the second laws of thermodynamics. We have shown that the first law and
GSL are always valid on apparent horizon and first law can not be satisfied on the particle and event horizons
in Einstein’s gravity. These results are always true for any types of dark energy models i.e., these results do
not depend on the dark energy models in Einstein’s gravity. But the GSL completely depends on the choices of
dark energy models in Einstein’s gravity. Here we have discussed the validity of GSL in Generalized holographic
and generalized Ricci dark energy models. From figures 1 and 2, we have seen that the GSL may be satisfied
on the particle horizon and can not be satisfied on the event horizon for both generalized holographic and Ricci
dark energy models. Also we have considered the Generalized holographic dark energy and generalized Ricci
dark energy as the original holographic dark energy, so in this situation we have calculated the expression of
the radius of the horizon L in terms of redshift z. On this horizon, we have shown that the first law can not
be satisfied. From figure 3, we have seen that the GSL can not be satisfied on the horizon of radius L for both
dark energy models.
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