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Abstract

We develop an iso spin like formulation with particles and their

anti particle counterparts. This leads to a new shortlived interaction

between them, valid at very high energies and mediated by massive

particles. We point out that evidence for this is already suggested by

the very recent observations by the CDF team at Fermi Lab.

It is well known that the Dirac equation [1, 2] is

(γµpµ −m)ψ = 0 (1)

Here γµ are 4×4 matrices obeying the Clifford algebra and ψ is a 4 component
wave function (spinor). ψ can be written as,

ψ =

(

φ
χ

)

(2)

where φ and χ are 2-component spinors, φ being the ”large” or positive
energy component of ψ and χ is the ”small” or negative energy component
which is such that

χ ∼ (
v

c
)2φ (3)

It is also known that this picture gets reversed at high energies where v → c
(Cf.refs.[1, 2]).
We observe that (1) can be written as:

ıh̄(∂φ/∂t) = cτ · (p− e/cA)χ+ (mc2 + eφ)φ,
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ıh̄(∂χ/∂t) = cτ · (p− e/cA)φ+ (−mc2 + eφ)χ. (4)

We can see from (4) that (in the absence of electromagnetic subsection),

t→ −t, φ → −χ (5)

Let us now consider intervals near the Compton scale, where as we know
v → c, and χ no longer is the ”small” component.
At the Compton scale we have the phenomenon of Zitterbewegung or rapid
unphysical oscillation. It has been pointed out that in this case, [3] that time
can be modelled by a double Weiner process and can be described as follows

d+
dt
x(t) = b+ ,

d−
dt
x(t) = b− (6)

where for simplicity we consider in the one dimensional case. This equation
(6) expresses the fact that the right derivative with respect to time is not
necessarily equal to the left derivative. It is well known that (6) leads to the
Fokker Planck equations [4, 5]

∂ρ/∂t + div(ρb+) = V∆ρ,

∂ρ/∂t + div(ρb−) = −U∆ρ (7)

defining

V =
b+ + b−

2
;U =

b+ − b−

2
(8)

We get on addition and subtraction of the equations in (7) the equations

∂ρ/∂t + div(ρV ) = 0 (9)

U = ν∇lnρ (10)

It must be mentioned that V and U are the statistical averages of the respec-
tive velocities and their differences. We can then introduce the definitions

V = 2ν∇S (11)

V − ıU = −2ıν∇(lnψ) (12)

We refer the reader to Smolin [6] for further details. We now observe that
the complex velocity in (12) can be described in terms of a positive or uni
directional time t only, but with a complex coordinate

x→ x+ ıx′ (13)
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To see this let us rewrite (8) as

dXr

dt
= V,

dXı

dt
= U, (14)

where we have introduced a complex coordinate X with real and imaginary
parts Xr and Xı, while at the same time using derivatives with respect to
time as in conventional theory.
From (8) and (14) it follows that

W =
d

dt
(Xr − ıXı) (15)

This shows that we can use derivatives with respect to the usual time deriva-
tive with the complex space coordinates (13) (Cf.ref.[7].
Generalizing (13), to three dimensions, we end up with not three but four
dimensions,

(1, ı) → (I, τ),

where I is the unit 2 × 2 matrix and τs are the Pauli matrices. We get the
special relativistic Lorentz invariant metric at the same time.
That is,

x+ ıy → Ix1 + ıx2 + jx3 + kx4, (16)

where (ı, j, k) momentarily represent the Pauli matrices; and, further,

x21 + x22 + x23 − x24 (17)

is invariant, thus establishing a one to one correspondence between (16) and
Minkowski 4 vectors as shown by (17).
In this description we would have from (16), returning to the usual notation,

[xıτ ı, xjτ j ] ∝ ǫıjkτ
k 6= 0 (18)

(No summation over ı or j) Alternatively, absorbing the xı and τ ı into each
other, (18) can be written as

[xı, xj ] = βǫıjkτ
k (19)

Equation (18) and (19) show that the coordinates no longer follow a commu-
tative geometry. It is quite remarkable that the noncommutative geometry
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(18) has been studied by the author in some detail (Cf.[4]), though from
the point of view of Snyder’s minimum fundamental length, which he intro-
duced to overcome divergence difficulties in Quantum Field Theory. Indeed
we are essentially in the same situation, because for our positive energy de-
scription of the universe, there is the minimum Compton wavelength cut off
for a meaningful description as is well known [8, 9, 10]. Following Feshbach
and Villars (loc.cit) we consider (2) to describe particles and anti-particles
: specifically a particle anti-particle pair depending on the upper or lower
component predominating.
Proceeding further we could invoke the SU(2) and consider the gauge trans-
formation [11]

ψ(x) → exp[
1

2
ıgτ · ω(x)]ψ(x). (20)

This is known to lead to a gauge covariant derivative

Dλ ≡ ∂λ −
1

2
ıgτ · W̄λ, (21)

We are thus lead to vector Bosons W̄λ and an interaction like the weak
interaction, described by

W̄λ → W̄λ + ∂λω − gωΛW̄λ. (22)

However, we are this time dealing, not with iso spin, but between positive
and negative energy states as in (4) that is particles and antiparticles. Also
we must bear in mind that this new non-electroweak force between particles
and anti particles would be short lived as we are at the Compton scale [12].
These considerations are also valid for the Klein-Gordon equation because of
the two component formulation developed by Feshbach and Villars [13, 14].
There too, we get equations like (4) except that φ and χ are in this case scalar
function. We would like to re-emphasize that our usual description in terms
of positive energy solutions is valid above the Compton scale (Cf.refs.[1, 2]).
To put it another way, equation (2) describes a new spinor in a ”superspin”
space.
Thus we are lead to a new short lived interaction (as we are near the Compton
scale), mediated by vector Bosons W̄ .
With regard to the W̄ acquiring mass, apart from the usual approach, we
can note the following. Equation (18) underlines the non-commutativity of
spacetime, and under these circumstances it has been argued that there is a
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break in symmetry that leads to a mass being acquired exactly as with the
Higgs mechanism [15, 4].
Let us see this in greater detail. The Gauge Bosons would be massless and
hence the need for a symmetry breaking, mass generating mechanism.
The well known remedy for the above situation has been to consider, in
analogy with superconductivity theory, an extra phase of a self coherent
system (Cf.ref.[16] for a simple and elegant treatment and also refs. [17] and
[11]). Thus instead of the gauge field Aµ, we consider a new phase adjusted
gauge field after the symmetry is broken

W̄µ = Aµ −
1

q
∂µφ (23)

The field W̄µ now generates the mass in a self consistent manner via a Higgs
mechanism. Infact the kinetic energy term

1

2
|Dµφ|

2 , (24)

where Dµ in (24) denotes the gauge derivative, now becomes

|Dµφ0|
2 = q2|W̄µ|

2|φ0|
2 , (25)

Equation (25) gives the mass in terms of the ground state φ0.
The whole point is as follows: The symmetry breaking of the gauge field
manifests itself only at short length scales signifying the fact that the field is
mediated by particles with large mass. Further the internal symmetry space
of the gauge field is broken by an external constraint: the wave function has
an intrinsic relative phase factor which is a different function of spacetime
coordinates compared to the phase change necessitated by the minimum cou-
pling requirement for a free particle with the gauge potential. This cannot
be achieved for an ordinary point like particle, but a new type of a physical
system, like the self coherent system of superconductivity theory now inter-
acts with the gauge field. The second or extra term in (23) is effectively an
external field, though (25) manifests itself only in a relatively small spatial
interval. The φ of the Higgs field in (23), in analogy with the phase function
of Cooper pairs of superconductivity theory comes with a Landau-Ginzburg
potential V (φ).
Let us now consider in the gauge field transformation, an additional phase
term, f(x), this being a scalar. In the usual theory such a term can always be
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gauged away in the U(1) electromagnetic group. However we now consider
the new situation of a noncommutative geometry referred to above,

[dxµ, dxν ] = Θµνβ, β ∼ 0(l2) (26)

where l denotes the minimum spacetime cut off. Equation (26) is infact
Lorentz covariant. Then the f phase factor gives a contribution to the second
order in coordinate differentials,

1

2
[∂µBν − ∂νBµ] [dx

µ, dxν ]

+
1

2
[∂µBν + ∂νBµ] [dx

µdxν + dxνdxµ] (27)

where Bµ ≡ ∂µf .
As can be seen from (27) and (26), the new contribution is in the term
which contains the commutator of the coordinate differentials, and not in
the symmetric second term. Effectively, remembering that Bµ arises from
the scalar phase factor, and not from the non-Abelian gauge field, Aµ is
replaced by

Aµ → Aµ +Bµ = Aµ + ∂µf (28)

Comparing (28) with (23) we can immediately see that the effect of noncom-
mutativity is precisely that of providing a new symmetry breaking term to
the gauge field, instead of the φ term, (Cf.refs. [18, 19]) a term not belonging
to the gauge field itself.
On the other hand if we neglect in (26) terms ∼ l2, then there is no extra con-
tribution coming from (27) or (28), so that we are in the usual non-Abelian
gauge field theory, requiring a broken symmetry to obtain an equation like
(28). This is not surprising because if we neglect the term ∼ l2 in (26) then
we are back with the usual commutative theory and the usual Quantum Me-
chanics.
It is quite remarkable that after the new interaction with the W̄ particles was
proposed, the CDF team in Fermi Lab announced a new force and particle
in proton anti-proton interactions that matches the above [20]. The CDF
rules out the Higgs Boson because the decays are much too rapid for this to
be a Higgs Boson. The experimental result has been checked to a 3σ plus
level of confidence, that is there is only a one in thousand chance for it to be
wrong.Subsequently this was pushed up to nearly five sigma the desired level
though the Dzero could not show up this finding If however the above theory
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and experiment are talking about the same thing then surely the confidence
level increases. Further experimental results are awaited. Other possible
explanations included techni-colour.
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