2002 Vol. 38 No. 3 pp. 351-354 DOI:

Microscopic Mechanism of the ω Variation in Moments of Inertia for the Yrast Superdeformed Bands ¹⁹⁴TI (1a, 1b)

YU Shao-Ying, ^{1, 2, 3} HE Xiao-Tao, ¹ LIU Shu-Xin, ^{2, 4} ZHAO En-Guang, ^{1, 2, 4} and ZENG Jin-Yan^{1, 2, 3, 4}

¹ College of Science and Engineering, Inner Mongolia University for Nationalities, Tongliao 028043, China

² Institute of Theoretical Physics, the Chinese Academy of Sciences, P.O. Box 2735, Beijing 100080, China

³ Department of Physics, Peking University, Beijing 100871, China

⁴ Center of Theoretical Physics, National Laboratory of Heavy Ion Accelerator, Lanzhou 730000, China

(Received: 2002-3-28; Revised:)

Abstract: The variation in moments of inertia $(J^{(1)} \text{ and } J^{(2)})$ with rotational frequency for the superdeformed bands in odd-odd nuclei, ¹⁹⁴TI(1a,1b), is investigated by using the particlenumber conserving method for treating the pairing interaction (monopole and quadrupole). The observed variations of $J^{(1)}$ and $J^{(2)}$ with ω are reproduced quite well in the calculation and the contributions from each major shell are clearly displayed.

PACS: 21.60.-n, 21.60.Ev Key words: particle-number conserving method, superdeformed band, dynamic and kinematic moments of inertia, cranked Nilsson orbital

[Full text: PDF]

Close