2005 Vol. 43 No. 1 pp. 92-96 DOI:

Spatially Periodic System with Infinite Globally Coupled Oscillators Driven by Temporal-Spatial Noise

HAN Yin-Xia, 1,3 LI Jing-Hui, 2,3 ZHAO Ying-Kui, 1,3 and CHEN Shi-Gang^{2,3}

- ¹ Graduate school of the Chinese Academy of Engineering Physics, P.O. Box 2101, Beijing 100088, China
- ² CCAST (World Laboratory), P.O. Box 8730, Beijing 100080, China
- ³ Center for Nonlinear Studies, Institute of Applied Physics and Computational Mathematics, P.O. Box 8009(28), Beijing 100088, China (Received: 2004-4-8; Revised: 2004-5-31)

Abstract: In this paper, we study spatially periodic system with infinite globally coupled oscillators driven by temporal-spatial noise and subject to a constant force. The results show that the system exhibits the phenomena of the non-equilibrium phase transition, transport of particles, and the anomalous hysteresis cycle for the mean field and the probability current.

PACS: 05.40.-a, 05.60.-k

Key words: temporal-spatial noise, non-equilibrium phase transition, anomalous hysteresis cycle, mean field

[Full text: PDF]

Close