## 2004 Vol. 41 No. 2 pp. 296-298 DOI:

Effect of Woods-Saxon Potential on the  $^{16}\mathrm{O}+^{20}\mathrm{Ne}$  Reaction Cross Section A.A. Farra

Physics Department, Faculty of Science, AL-Azhar University, Gaza, Palestine (Received: 2003-4-8; Revised: )

Abstract: The excitation function and angular distributions for the  $^{16}\text{O}+^{20}\text{Ne}$  system have been explained using the distorted wave Born approximation (DWBA) calculations. The real and imaginary Woods-Saxon optical potentials are assumed to be energy-dependent. The gross resonant structures observed in the  $^{20}\text{Ne}(^{16}\text{O})$ ,  $^{16}\text{O})^{20}\text{Ne}$  excitation function are well described by the present DWBA calculations. Although the elastic and elastic-transfer analyses introduce a qualitative description of the experimental data, the coherent sum of the two reaction processes exhibit a much better result for both forward and large-angle data.

PACS: 25.70.Cd, 24.50.+g, 20.10.Ht, 25.70.-Z, 24.10.Eq Key words:  $^{20}$ Ne( $^{16}$ 0,  $^{20}$ Ne) $^{16}$ 0,  $^{20}$ Ne( $^{16}$ 0,  $^{16}$ 0) $^{20}$ Ne, incident energies=24.5 MeV, calculated  $\sigma(\theta)$ , DWBA calculations

[Full text: PDF]

Close