2004 Vol. 41 No. 1 pp. 101-105 DOI:

Formation Mechanism and Binding Energy for Body-Centered Cubic Structure of $\mathrm{He_9}^+$ Cluster

ZHANG Jian-Ping, ¹ GOU Qing-Quan, ² and LI Ping²

¹ Department of Physics, Leshan Teacher's College, Leshan 614000, China

Abstract: The formation mechanism for the body-centered cubic structure of $\mathrm{He_9^+}$ cluster is proposed and its total energy curve is calculated by the method of a Modified Arrangement Channel Quantum Mechanics. The energy is the function of separation R between the nuclei at the center and an apex of the body-centered cubic structure. The result of the calculation shows that the curve has a minimal energy -25.6669 (a.u.) at R=2.550a₀. The binding energy of $\mathrm{He_9^+}$ with respect to $\mathrm{He^+}$ +8He was calculated to be 0.8857 a.u. This means that the cluster of $\mathrm{He_9^+}$ may be formed in the body-centered cubic structure of R=2.55a₀.

PACS: 36.40, 34.20

Key words: He_o⁺ cluster, binding energy, body-centered cubic structure

[Full text: PDF]

Close

² Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China (Received: 2003-3-28; Revised:)