2004 Vol. 41 No. 6 pp. 925-928 DOI:

Equation of State of Nuclear Matter in Chiral σ - ω Model

CHEN Wei, ¹ DONG Dong-Qiao, ² WEN De-Hua, ^{2,3} LIU Guo-Tao, ² and LIU Liang-Gang²

¹ Department of Physics, Jinan University, Guangzhou 510632, China
² Department of Physics, Zhongshan University, Guangzhou 510275, China (Received: 2003-10-14; Revised: 2003-11-10)

Abstract: The equation of state of nuclear matter is studied in the 1-loop approximation of chiral linear σ - ω model. By introducing the density-dependent coupling constants, the problem of tachyon pole in the chiral σ - ω model is resolved. The 1-loop contributions of σ and π mesons to the nucleon's binding energy are included, while the empirical properties of nuclear matter such as saturation density, binding energy, and incompressibility are well reproduced.

PACS: 21.90.+f, 21.65.+f Key words: equation of state, chiral σ - ω model

[Full text: PDF]

Close