2005 Vol. 43 No. 2 pp. 287-294 DOI:

Microscopic Mechanism of Large Fluctuation in Odd-Even Differences in Moments of Inertia for Actinide Nuclei

YU Lei, ^{1,2} GONG Lun-Xun, ^{1,2} LIU Shu-Xin, ¹ and ZENG Jin-Yan¹

¹ Department of Physics, Peking University, Beijing 100871, China ² Department of Physics, Guizhou Normal University, Guiyang 550001, China (Received: 2004-7-19; Revised:)

Abstract: The experimental large fluctuation in odd-even differences in moments of inertia of deformed actinide nuclei is investigated using the particle-number conserving (PNC) method for treating the cranked shell model with monopole and quadrupole pairing interactions. PNC calculations show that the large odd-even difference in moments of inertia mainly comes from the interference contributions $j(\mu v)$ from particles in high j intruder orbitals μ and ν quite near the Fermi surface, which have no counterpart in the BCS formalism. The effective monopole and quadrupole pairing interaction strengths are determined to fit the experimental odd-even differences in binding energies and bandhead moments of inertia. The experimental results for the variation of moments of inertia with rotational frequency ω are reproduced well by the PNC calculation. The nearly identical experimental moments of inertia between 236 U(gsb) and 238 U(gsb) at low frequencies $\hbar\omega \leq 0.20$ MeV are also reproduced quite well.

PACS: 21.10.Re, 27.70.+q, 21.60.Cs, 27.80.+w Key words: odd-even differences in moments of inertia, cranked shell model, particle-number conserving treatment

[Full text: PDF]

Close