2005 Vol. 44 No. 4 pp. 638-642 DOI:

Effect on Intensity Correlation Time by Input Signal in a Single-Mode Laser with Bias Signal Modulation

CHEN Li-Mei, $^{1,\,2}$ CAO Li, $^{2,\,4}$ WU Da-Jin, $^{3,\,4}$ and GE Guo-Qin 3

 ¹ Department of Physics, Shenzhen University, Shenzhen 518060, China
² State Key Laboratory of Laser Technology, Huazhong University of Science and Technology, Wuhan 430074, China
³ Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
⁴ CCAST (World Laboratory), P.O. Box 8730, Beijing 100080, China (Received: 2004-11-30; Revised: 2005-2-5)

Abstract: The effect on intensity correlation time T by input signal is studied for gainnoise model of a single-mode laser driven by colored pump noise and colored quantum noise with colored cross-correlation with a bias signal modulation in this paper. By using the linear approximation method, we detect that there exists maximum (i.e., resonance) in the curve of the intensity correlation time T upon bias current i_0 when the noise correlation coefficient λ is positive; and there exists minimum (i.e., suppression) in the T- i_0 curve when λ is negative. And when λ is zero, T increases monotonously with increasing i_0 . Furthermore, the curve of T upon the signal frequency Ω is also studied. Our study shows that no matter what the value of λ is, there exists minimum (i.e., suppression) in the T- Ω curve.

PACS: 05.40.-a Key words: intensity correlation time, bias signal modulation, linear approximation method

[Full text: PDF]

Close