2005 Vol. 44 No. 3 pp. 509-513 DOI:

Gluonic Origin and Glueball Nature of Pomeron

ZHOU Li-Juan, 1, 2 HE Xiao-Rong, 2 and MA Wei-Xing³

¹ Department of Information and Computing Science, Guangxi University of Technology, Liuzhou 545006, China
² Department of Physics, Guangxi University, Nanning 530004, China
³ Institute of High Energy Physics, the Chinese Academy of Sciences, P.O. Box 918, Beijing 100039, China
(Received: 2005-12-28; Revised:)

Abstract: The Pomeron-nucleon coupling vertex is theoretically derived from the fundamental theory of strong interaction QCD. The empirical vertex $\beta\gamma^{\mu}F_1(t)$ used commonly in diffractive processes with a coupling strength β =6.0 GeV⁻¹ is initially obtained from QCD theoretically. Our study not only reproduces the Pomeron-nucleon coupling from QCD but also clearly shows the gluonic origin and glueball nature of Pomeron, which is a longstanding puzzle. From this investigation, we claim that Pomeron can be regarded as a Reggeized tensor glueball $\xi(2230)$ with quantum numbers of $I^{G}J^{PC}$ =0⁺²⁺⁺. Since the tensor glueball $\xi(2230)$ lies on the Pomeron trajectory $\alpha_p(t=M_{\xi}^2)=2$, the longstanding puzzle that no physical particle lies on the Pomeron trajectory, $\alpha_n(t)=1.08+0.20$ GeV⁻²•t, seems to be solved.

PACS: 12.40.Nn, 27.20.+n, 12.38.Lg, 13.85.Dz, 13.60.Le Key words: Pomeron, gluon, glueball, QCD, coupling vertex of Pomeron

[Full text: PDF]

Close