2005 Vol. 44 No. 3 pp.525.528 DOI:

Formation Mechanismand Binding Energy for Equilateral Triangle Structure of Li_{3} Cluster
Yang Jian-Hui, LI Ping, and GOU Qing-Quan

Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China (Received: 2004-12.30; Revised:)

Abstract: The formation mechanismfor the equilateral triangle structure of Li cluster is proposed. The curve of the total energy versus the interatomic distance for this structure has been calculated by using the method of Gou's Modified Arrangement Channel Quantum Mechanics. The result shows that the curve has a minmal energy of 22.33860 a. u. at $R=5.82 \mathrm{a}$. . The total energy of Li_{3} when R approaches ∞ has the value of 22.28409 a . u . This is also the total energy of three lithium atoms dissociated from Li ${ }_{3}$. The difference value of 0.054508 a. u. for the above two energy values is the dissociation energy of Li_{3} cluster, which is also its binding energy. Therefore the binding energy per lithium atomfor Li 3 is 0.018169 a. u. $=0.494$ eV, which is greater than the binding energy of 0.453 eV per atomfor Li 2 calculated in a previous work. This means that the Li cluster may be formed in the equilateral triangle structure of side length $R=5.82 a_{0}$ stably with a stronger binding from the symetrical interaction among the three lithium atoms.

PACS: 36.40..C
Key words: Li 3 cluster, binding energy, equilateral triangle structure
[Fu11 text: PDF]
Close

