2005 Vol. 44 No. 3 pp. 532-536 DOI:

Interference of Two-Component Bose-Einstein Condensates with a Coupling Drive in Presence of Dissipation

YU Zhao-Xian, ¹ WANG Ji-Suo, ² and JIAO Zhi-Yong³

- ¹ Beijing Information Technology Institute, Beijing 100101, China
- ² Department of Physics, Liaocheng University, Liaocheng 252059, China
- ³ Department of Applied Physics, University of Petroleum (East China), Dongying 257061, China (Received: 2005-1-6; Revised:)

Abstract: The interference of the two-component Bose-Einstein condensates with a coupling drive in the presence of the dissipation is studied. We find that when the two-component Bose-Einstein condensates are initially in the coherent states, for the smaller dissipation parameters compared with that of the rf frequency ω_{rf} , the interference intensity exhibits damply oscillation behavior, whereas when the dissipation parameters are larger than that of the ω_{rf} , the interference intensity exhibits a fast attenuation behavior. As a comparison, the interference intensity in the absence of the dissipation is also studied. We conclude that the dissipation of the system can be evaluated by selecting the ω_{rf} experimentally.

PACS: 42.25.Hz, 03.75.Kk

Key words: interference, dissipation, two-component Bose-Einstein condensates

[Full text: PDF]

Close