2003 Vol. 40 No. 5 pp. 563-572 DOI:

Cabibbo-Suppressed Non-Leptonic Decays of Λ_c and Final State Interaction

CHEN Shao-Long, ^{1,2} GUO Xin-Heng, ³ LI Xue-Qian, ^{1,2,4} and WANG Guo-Li^{1,2,4}

¹ Department of Physics, Nankai University, Tianjin 300071, China
² CCAST (World Laboratory), P.O. Box 8730, Beijing 100080, China
³ Department of Physics and Mathematical Physics, and Special Research Center for the Subatomic Structure of Matter, Adelaide University, SA 5005, Australia
⁴ Institute of Theoretical Physics, Academia Sinica, Beijing 100080, China (Received: 2003-3-18; Revised:)

Abstract: With the diquark structure of Λ_c , we investigate the branching ratio of $\Lambda_c \rightarrow n\pi^+$ and $p\pi^0$. The results show that without considering the final state interaction (FSI), the branching ratio of $\Lambda_c \rightarrow p\pi^0$ is only of order 10⁻⁶ whereas this ratio could reach 10⁻⁴ and is at the same order as $\Lambda_c \rightarrow n\pi^+$ if taking into account the FSI effects. Concrete values depend on phenomenological parameters adopted in the calculations. These branching ratios can be measured in the experiments to come.

PACS: 14.20.Lq, 13.30.-a, 12.39.Hg, 12.39.-x Key words: heavy quark effective theory, diquark structure, Cabibbo-suppressed non-leptonic decay

[Full text: PDF]

Close