2002 Vol. 38 No. 1 pp. 59-64 DOI:

Nuclear Effect Study Under K Factor's Nonconstancy

HOU Zhao-Yu, $^{1,\,2}$ WU Wen-Wang, 3 HE Ming-Zhong, 4 and ZHANG Ben-Ai 2

¹ Department of Physics, Shijiazhuang Normal College, Shijiazhuang 050801, China
² Graduate School, the Chinese Academy of Engineering Physics, Beijing 100088, China
³ Department of Mathematics and Physics, Shijiazhuang Railway College, Shijiazhuang 050043, China
⁴ Department of Electropics, Unbei Normal University, Shijiazhuang 050016, China

⁴ Department of Electronics, Hebei Normal University, Shijiazhuang 050016, China (Received: 2002-3-6; Revised:)

Abstract: A consistent approach to estimating nuclear effect functions $R_v^A(x_2)$ and $R_s^A(x_2)$ based on numerical iteration technique is presented in the quark-parton model when taking into account the nonconstancy of quantum chromodynamics correction factor K. $R_v^A(x_2)$ and $R_s^A(x_2)$ correspond respectively to the valence quark distributions for one bound nucleon within the nucleus and to the sea quark ones. Related numerical analysis is given for nuclei ${}_{6}C^{12}$, ${}_{20}Ca^{40}$, and ${}_{26}Fe^{56}$. As the basis, it adopts both experimental data of the high energy proton-nucleus Drell-Yan process and of the high energy lepton-nucleus deep inelastic scattering.

PACS: 13.60.Hb, 13.85.Fb, 25.40.Ep, 25.40.eV Key words: K-factor, Drell-Yan process, deep inelastic scattering, nuclear parton distribution

[Full text: PDF]

Close