2002 Vol. 37 No. 2 pp. 247-252 DOI:

Thermal Shifts and Electron-Phonon Interactions of ${}^{4}T_{2}$ and ${}^{4}T_{1}$ Broad Bands for Ruby

MA Dong-Ping, 1, 2 MA Ning³ and CHEN Ju-Rong¹

¹ Department of Applied Physics, Sichuan University, Chengdu 610065, China
² International Centre for Materials Physics, The Chinese Academy of Sciences, Shenyang 110015, China
³ Department of Computer Science, Sichuan University, Chengdu 610064, China

(Received: 2001-6-25; Revised:)

Abstract: For the first time, by taking into account all the irreducible representations and their components in the electron-phonon interaction (EPI) as well as all the levels and the admixtures of wavefunctions within d^3 electronic configuration, the values of parameters in expressions of Raman and optical-branch terms of thermal shifts (TS) due to EPI for three levels, ${}^{4}T_{2}$ band and ${}^{4}T_{1}$ band of ruby have been evaluated; the contributions to TS of ${}^{4}T_{2}$ and ${}^{4}T_{1}$ broad bands from thermal expansion have also been calculated; and then, the TS of the peak energies of ${}^{4}T_{2}$ and ${}^{4}T_{1}$ broad bands have been calculated. The results are in satisfactory agreement with observed data. The values of single-electron reduced matrix elements representing the strengths of EPI of ${}^{4}T_{2}$ and ${}^{4}T_{1}$ bands have respectively been determined. For TS of the peak energies of ${}^{4}T_{2}$ and ${}^{4}T_{1}$ bands, it is found that the contribution to TS from the second-order term in EPI Hamiltonian is dominant; TS due to EPI of acoustic branches are over two times as much as those of optical branches, and both of them increase rapidly with temperature; the neighbor-level term is insignificant; the contribution to TS from thermal expansion is specially important, and all the three terms of TS of ${}^{4}T_{2}$ or ${}^{4}T_{1}$ band are red shifts.

PACS: 78.20.Nv, 71.70.Ch, 63.20.Mt, 63.20.Kr Key words: crystal fields, optical spectral bands, electron-phonon interaction, thermal expansion, thermal shift

[Full text: PDF]

Close