2006 Vol. 45 No. 6 pp. 1147-1152 DOI:

Pressure-Dependent Base-Wavefunction Admixture andLifetime of R_1 State of $La_2Lu_2Ga_3O_{12}$: Cr^{3+}

ZHANG Zheng-Jie¹ and MA Dong-Ping²

¹ College of Information Engineering, Chengdu University of Technology, Chengdu 610059, China ² Department of Applied Physics, Sichuan University, Chengdu 610065, China (Received: 2005-9-30; Revised:)

Abstract: As a key factor leading to the pressure-dependent R₁-line-shift reversal and R₁-state lifetime, at 10 K, the pressure-dependent variation of mixing-degree of $|t_2^{-2}({}^{3}T_1)e^{4}T_2\rangle$ and $|t_2^{-32}E\rangle$ base-wavefunctions in the wavefunction of R₁ state of LLGG: Cr³⁺ has been calculated and analyzed. From this, the physical origin of the pressure-dependent R₁-line-shift reversal has been revealed. Furthermore, by using the pressure-dependent values of the sum of all square mixing-coefficients of $|t_2^{-2}({}^{3}T_1)e^{4}T_2\rangle$ in the wavefunction of R₁ state, the lifetimes of R₁ state of LLGG: Cr³⁺ at various pressures have been calculated, which are in good agreement with observed results. The quantum anticrossing effect between $t_2^{-32}E$ and $t_2^{-2}({}^{3}T_1)e^{4}T_2$ levels due to both spin-orbital interaction and electron-phonon interaction is remarkable, which is related to the admixture of $|t_2^{-2}({}^{3}T_1)e^{4}T_2\rangle$ and $|t_2^{-32}E\rangle$ as well as the low-high crystal-field transition.

PACS: 78.20.Hp, 71.70.Ch, 71.70.Ej, 63.20.Mt Key words: high-pressure effect, base-wavefunction mixing, R₁-state lifetime, quantum anticrossing, R₁-line-shift reversal, low-high crystal-field transition

[Full text: PDF]

Close