2002 Vol. 38 No. 5 pp. 597-600 DOI:

Formation Mechanism and Binding Energy for Equilateral Triangle Structure of ${\rm He_3}^+$ Cluster

GOU Qing-Quan¹, ZHANG Jian-Ping², and LI Ping¹

¹ Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China ² Department of Physics, Leshan Teacher's College, Leshan 614000, China (Received: 2002-1-23; Revised:)

Abstract: The formation mechanism for the equilateral triangle structure of the He_3^+ cluster is proposed. The curve of the total energy versus the internuclear distance R for this structure has been calculated by the method of a modified arrangement channel quantum mechanics. The result shows that the curve has a minimal -7.81373 a.u at R=1.55a₀. The binding energy of He_3^+ with respect to $He+He^++He$ was calculated to be 0.1064 a.u. (about 2.89 eV). This means that the He_3^+ cluster may be formed in the equilateral triangle structure stably by the interaction of He^+ with two helium atoms.

PACS: 36.40, 34.20 Key words: He_3^+ cluster, binding energy, equilateral triangle structure

[Full text: PDF]

Close