2002 Vol. 38 No. 5 pp.597-600 DOI:

Formation Mechanism and Binding Energy for Equilateral Triangle Structure of $\mathrm{He}_{3}{ }^{+}$ Cluster

GOU Qing-Quan ${ }^{1}$, ZHANG Jian•Ping ${ }^{2}$, and LI Ping ${ }^{1}$

1 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
${ }^{2}$ Department of Physics, Leshan Teacher's College, Leshan 614000, China
(Received: 2002.1-23; Revised:)

Abstract: The formation mechanismfor the equilateral triangle structure of the $\mathrm{He}_{3}{ }^{+}$cluster is proposed. The curve of the total energy versus the internuclear distance R for this structure has been calculated by the method of a modified arrangement channel quantum mechanics. The result shows that the curve has a minimal 7.81373 a. u at $R=1.55 a_{0}$. The binding energy of $\mathrm{He}_{3}{ }^{+}$with respect to $\mathrm{He}+\mathrm{He}^{+}+\mathrm{He}$ was calculated to be 0.1064 a. u. (about 2.89 eV). This means that the $\mathrm{He}_{3}{ }^{+}$cluster may be formed in the equilateral triangle structure stably by the interaction of He^{+}with two helium atoms.

PaCs: 36.40, 34.20
Key words: $\mathrm{He}_{3}{ }^{+}$cluster, binding energy, equilateral triangle structure
[Full text: PDF]

