2002 Vol. 38 No. 2 pp. 139-142 DOI:

Supersymmetry and Shape Invariance of Hartmann Potential and Ring-Shaped Oscillator Potential in the r and θ Dimensions of Spherical Polar Coordinates

QIAN Shang-Wu, 1 HUANG Bo-Wen, 2 WANG De-Yun, 2 and GU Zhi-Yu 2

¹ Physics Department, Peking University, Beijing 100871, China
² Physics Department, Capital Normal University, Beijing 100037, China (Received: 2001-12-14; Revised:)

Abstract: This article shows that in spherical polar coordinates, some noncentral separable potentials have supersymmetry and shape invariance in the r and θ dimensions, we choose Hartmann potential and ring-shaped oscillator as two important examples, thus in principle the energy eigenvalues and energy eigenfunctions of such the potentials in the r and θ dimensions can be obtained by the method of supersymmetric quantum mechanics. Here we use an alternative method to get the required results.

PACS: 03.65.Ge, 03.65.Fd, 03.65.Bz Key words: Hartmann potential, ring-shaped oscillator potential, supersymmetric quantum mechanics, shape invariance, noncentral separable potential, spherical polar coordinates

[Full text: PDF]

Close