2002 Vol. 38 No. 2 pp. 195-199 DOI:

On the Mixed Propagator Approach to ρ - ω Mixing

YAN Mu-Lin^{1,2}, JIANG Ji-Hao, ^{1,2} and WANG Xiao-Jun³

- ¹ CCAST (World Laboratory), P.O. Box 8730, Beijing 100080, China
- ² Center for Fundamental Physics, University of Science and Technology of China, Hefei 230026, China
- ³ Instite of Theoretical Physics, Academia Sinica, Beijing 100080, China (Received: 2001-12-20; Revised:)

Abstract: The mixed propagator (MP) approach to ρ - ω mixing is discussed. It is found that under the pole-approximation assumption the results of MP approach is not compatible both with the effective Lagrangian theory and with the experiment measurement criterion. To overcome these inconsistent, we propose a new MP approach in which the physical states of ρ and ω are determined by the requirement of experimental measurement to meson resonance. In terms of this new MP approach, the EM pion form factor F_{π} and form factors of $\rho^0 \to \pi^0 \gamma$ and of $\omega \to \pi^0 \gamma$ are derived. The results of F_{π} are in good agreement with data. The form factor of $\rho^0 \to \pi^0 \gamma$ exhibits a hidden charge-asymmetry enhancement effect which agrees with the prediction of the effective Lagrangian theory.

PACS: 14.40.Cs, 13.25.Jx, 12.40.Vv, 13.40.Hq

Key words: isospin breaking, VMD, ρ - ω mixing, decay of vector mesons

[Full text: PDF]

Close