2006 Vol. 46 No. 6 pp. 1113-1120 DOI:

Kinetic Behavior of Exchange-Driven Growth with Catalyzed-Birth Processes

WANG Hai-Feng, 1, 2 LIN Zhen-Quan, 1 and KONG Xiang-Mu²

¹ Department of Physics, Wenzhou University, Wenzhou 325027, China ² Department of Physics, Qufu Normal University, Qufu 273165, China (Received: 2006-2-23; Revised:)

Abstract: Two catalyzed-birth models of n-species $(n \ge 2)$ aggregates with exchange-driven growth processes are proposed and compared. In the first one, the exchange reaction occurs between any two aggregates A_k^m and A_j^m of the same species with the rate kernels $K_m(k,j)=K_mkj$ $(m=1,2,\ldots,n,n\ge 2)$, and aggregates of A^n species catalyze a monomer-birth of A^l species $(l=1,2,\ldots,n-1)$ with the catalysis rate kernel $J_1(k,j)=J_1kj^v$. The kinetic behaviors are investigated by means of the mean-field theory. We find that the evolution behavior of aggregate-size distribution $a_k^{-1}(t)$ of A^l species depends crucially on the value of the catalysis rate parameter v: (i) $a_k^{-1}(t)$ obeys the conventional scaling law in the case of $v \le 0$, (ii) $a_k^{-1}(t)$ satisfies a modified scaling form in the case of v > 0. In the second model, the mechanism of monomer-birth of A^n -species catalyzed by A^l species is added on the basis of the first model, that is, the aggregates of A^l and A^n species are found to fall into two categories for the different v: (i) growth obeying conventional scaling form with $v \le 0$, (ii) gelling at finite time with v > 0.

PACS: 82.20.-w, 05.40.-a, 68.43.Jk, 89.75.Da Key words: kinetic behavior, exchange-driven growth, catalyzed-birth, scaling law, rate equations

[Full text: PDF]

Close