2005 Vol. 44 No. 1 pp. 151-154 DOI:

Moving and Interaction of Compact-like Pulses in Klein-Gordon Lattice System XIA Qing-Lin,¹ YI Jian-Hong,^{1,2} YE Tu-Ming,¹ and DU Juan¹

 ¹ School of Physical Science and Technology and State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083, China
² Department of Materials, Oxford University, Parks Road, Oxford QXI 3PH, UK (Received: 2004-10-20; Revised:)

Abstract: We study the moving and interaction of the compact-like pulses in the system of an anharmonic lattice with a double well on-site potential by a direct algebraic method and numerical experiments. It is found that the localization of the compact-like pulse is related to the nonlinear coupling parameter C_{nl} and the potential barrier height V_0 of the double well potential. The velocity of the moving compact-like pulse is determined by the linear coupling parameter C_1 , the localization parameter q (the nonlinear coupling parameter C_{nl}) and the potential barrier height V_0 . Numerical experiments demonstrate that appropriate C_1 is not detrimental to a stable moving of the compact-like pulse. However, the head on interaction of two compact-like pulses in the lattice system with comparatively small C_1 leads to the appearance of a discrete stationary localized mode and small amplitude nonlinear oscillation background, while moderate C_1 results in the emergence of two moving deformed pulses with damping amplitude and decay velocity and radiating oscillations, and biggish C_1 brings on the appearing of four deformed kinks with radiating oscillations and different moving velocities.

PACS: 63.90.+t, 63.20.Pw, 63.20.Ry Key words: Klein-Gordon lattice, compact-like pulse, moving, interaction

[Full text: PDF]

Close