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Abstract. We consider a simple atomic two-body bound state system that is overall charge neutral and
placed in a static electric and magnetic field, and calculate the magneto-electric response function as a
function of frequency. This is done from first principles using a two-particle Hamiltonian for both an
harmonic oscillator and Coulomb binding potential. In the high frequency limit, the response function falls
off as 1/ω2 whilst at low frequencies it tends to a constant value.

PACS. 31.15.A- Ab initio calculations – 31.15.ap Polarizabilities and other atomic and molecular prop-
erties

1 Introduction

Magneto-electric effects are by now a well established phe-
nomena both theoretically and experimentally. The ten-
dency has been to focus on relatively large molecular sys-
tems where DFT calculations [1,2] apply and experimen-
tal values have been measured [3]. In addition to being
associated with important optical phenomena [2,4], their
existence has played an important role in the Casimir
physics [5,6,7], in particular if it is possible in certain
circumstances to find a contribution from the quantum
vacuum to a bodies momentum. For these reasons we con-
sider it an interesting question to ask what are the simplest
models that describe possible and display magneto-electric
effects.

In this article we calculate the magneto-electric re-
sponse function for the two simplest bound state systems -
the harmonic oscillator and the hydrogen atom. The prin-
cipal difference between these two atomic systems is that
the harmonic oscillator is strongly bound whereas the hy-
drogen atom with its Coulomb potential is weakly bound.
This manifests itself in the accessibility of different energy
eigenstates in the perturbation theory

This article is organised as follows. In Section 2 we de-
fine the atomic system and formulate the response for an
arbitrary binding potential. As a tractable example that
has a closed form, the harmonic oscillator is chosen and
its magneto-electric response function calculated explic-
itly. In Section 3 the response function for hydrogen is
presented. It is then compared to the appropriate DFT
result and its relation to experimental values. Finally, in

Section 4 we summarise our results and provide some com-
ment on their validity and applicability.

2 General formulation

We will now derive the ME response function for a two-
body charge neutral composite system in static external
fields (E0,B0) using the Hamiltonian formalism (the bold-
face used here is to indicate they are external fields). One
can also use the path integral approach and the coupled
classical Lorentz force equations to obtain information
about the response function. The path integral gives a cor-
rect response function at high frequencies but it is not reli-
able at low frequencies as well as suffering from the wrong
analytic structure in the complex frequency plane [8]. A
consideration of the coupled Lorentz force equations pro-
duces similar difficulties and so we use the Hamiltonian
method exclusively in this paper.

The system we consider is illustrated in Figure 1. Two
equal but opposite electrical charges with coordinates (qi1, q

i
2)

and masses (m1,m2) interacting with a classical (c-number)
gauge field (φ,Ai) that are the combined contribution of
the static external fields and the fluctuating source that is
used to probe the system. A binding potential V (q1 − q2)
holds the charges together giving a bound state that is
overall charge neutral. The Hamiltonian that describes
this system is given by

H =
1

2m1

(p1 − eA(q1))
2 + eφ(q1)

+
1

2m2

(p2 + eA(q2))
2 − eφ(q2) + V (q1 − q2). (1)
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Fig. 1. The bound state two-body atomic system consisting
of two equal but opposite electrical charges, with two different
masses m1 and m2 and coordinates qi1 and qi2 (with respect to
the coordinate system Σ). To deduce the response function for
this system we will change coordinates to the centre of mass
coordinate Xi and the separation coordinate xi.

To calculate the response function of this body due to a
high frequency electromagnetic field, it is necessary to pass
to a new set of coordinates that consists of both the centre
of mass coordinate X i and the separation vector xi. These
are shown in Figure 1. The new variables are then defined
by X := (m1q1+m2q2)/M , x := (q1−q2), M := m1+m2,
m := m1m2/M , and m∆ = m2−m1. Correspondingly, we
change from the two particles momenta (p1, p2) to (P, p)
where P is the conjugate momenta of the centre of mass
coordinate X and p is likewise the conjugate momenta to
the separation vector x. It is also necessary to implement
this change of coordinates on the gauge field; it can then
be expanded about the centre of mass coordinate as

A(X + (m2/M)x) = A(X) +
(m2

M

)

xi∇iA(X)

+

(

1

2

)

(m2

M

)2

xixj∇i∇jA(X), (2)

A(X − (m1/M)x) = A(X)−
(m1

M

)

xi∇iA(X)

+

(

1

2

)

(m1

M

)2

xixj∇i∇jA(X), (3)

and similarly for the scalar potential φ. We will work to
first order in the spatial derivatives of the gauge potential
and thereby neglect the last terms in the above expansion.
This corresponds to electric and magnetic fields that can
vary in time, but that are spatially constant (so the ap-
proach is restricted to wavevectors that are less than the
inverse of the size of the atomic system).

Using the Lagrangian as an intermediate step in per-
forming the change of coordinates, we recognize here that
E(t,X) = −∇φ(t,X)−∂tA(t,X), whilst the derivative of
the vector potential once projected with the Levi-Civita
tensor will give the magnetic field. The Hamiltonian in the

new coordinates after making this expansion reads

H =
1

2M
P 2 +

1

2m
p2 + V (x) − exi ·Ei(t,X)

−e
(m∆

M2

)

P i(x · ∇)Ai(t,X)

−e
( m∆

Mm

)

pi(x · ∇)Ai(t,X)

+
e2

2m

(m∆

M

)2

xixj∇iAk(t,X)∇jAk(t,X)

+O(∇2A). (4)

The ME activity results from a source magnetic field in-
ducing electrical polarisation.We can now define the magneto-
electric response of the bound state system by promoting
all of the canonical degrees of freedom to operators. It is
defined by

〈eδx̂i(t)〉 :=

∫

dt′χEB
ij (t− t′)δBj(t

′, X), (5)

where the lhs is the standard expectation value of the
fluctuating electric dipole moment induced on the rhs by
an externally applied fluctuating magnetic field (i.e. a test
source) that is in general time and space dependent. In
terms of correlation functions, it is given by the retarded
two-point function

χEB
ij (t− t′) = −iθ(t− t′)〈Ω|[eδx̂i(t), δÔj(t

′)]|Ω〉, (6)

where the operator Ôj(t
′) couples to the fluctuating mag-

netic field δBj(t
′, X), and is to be found from the micro-

scopic theory given by the Hamiltonian Equation (4). The
ground state |Ω〉 that we will use will be specified later
in this section. Taking the Fourier transform of this one
finds in frequency space

χEB
ij (ω) = 〈Ω|ex̂i

1

Ĥ − E0 − h̄ω
Ôj |Ω〉

+〈Ω|ex̂i

1

Ĥ − E0 + h̄ω
Ôj |Ω〉∗, (7)

where E0 is the ground state energy of the system. To ob-
tain the detailed form of the response function, we need
to specify the form of the operator Ôj . One can see from
Equation (4) that the operator has two contributions. One
is linear and the other is quadratic in the gauge poten-
tial. To calculate the operator we make the specific gauge
choice for the gauge potential

A =
1

2
(B0 + δB(t)) ∧X. (8)

With this choice the Hamiltonian is then a function of only
gauge invariant quantities. As a final step to fully specify
the Hamiltonian we include the static electric field by sub-
stituting Ei(t,X) = E0

i . The final form of the Hamiltonian
that will be used for subsequent calculations is given by

H =
1

2M
P̂ 2 +

1

2m
p̂2 + V (x̂)− ex̂i · E0

i
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−e
( m∆

2M2

)

(x̂ ∧ P̂ ) · (B0 + δB(t))

−e
( m∆

2Mm

)

L̂ · (B0 + δB(t))

+
e2

4m

(m∆

M

)2

x̂ix̂jB0

mδBn(t)[δijδmn − δimδjn], (9)

where L = x ∧ p is the orbital angular momentum about
the centre of mass origin. One can now just read off the
operator that couples to the fluctuating magnetic field

Ôi = −
( em∆

2mM

)

L̂i

+
e2

4m

(m∆

M

)2

x̂ax̂b[δabδij − δaiδbj ]B
0

j . (10)

There is also a contribution from the term linear in the
centre of mass momenta. However, this is zero when eval-
uated between the ground states (zero momentum plane-
wave eigenfunctions). This amounts to a choice of refer-
ence frame (the centre of mass frame) and can be used to
define the components of the static external electromag-
netic fields as well. Indeed, we have not specified so far the
nature of the ground state |Ω〉. For computational conve-
nience we work with a perturbed ground state due to the
presence of static external electric field

|Ω〉 = |0〉 − eE0

i

∞
∑

n=1

1

En − E0

|n〉〈n|x̂i|0〉. (11)

This choice corresponds to the physical situation where we
put the two particle system in the static external electric
field first, let the system settle down and then apply the
static external magnetic field. From Equation (10) we see
there are two separate contributions to the response func-
tion. The first is due to a coupling with the angular mo-
mentum operator which we write as χEB

ij (ω, L̂); the second
is due to a quadrupole moment coupling which we write as
χEB
ij (ω, x̂2). Then the full response function is just given

by their sum χEB
ij (ω) = χEB

ij (ω, L̂) + χEB
ij (ω, x̂2). First

consider evaluating the contribution due to the angular
momentum operator

χEB
ij (ω, L̂) = −

e2∆m

mM
〈Ω|x̂i

1

Ĥ − E0 − h̄ω
L̂j |Ω〉

−
e2∆m

mM
〈Ω|x̂i

1

Ĥ − E0 + h̄ω
L̂j |Ω〉∗.(12)

The next step is to expand the denominators in terms of
the static magnetic field. From Equation (9) the perturba-

tion of the Hamiltonian is given by δH = −(em∆/mM)L̂iB
0

i ,
therefore we find (keeping only the terms linear in the
static magnetic field)

χEB
ij (ω, L̂) = −

(

e2m∆

mM

)

(em∆

mM

)

×〈Ω|x̂i

1

Ĥ0 − E0 − h̄ω
(L̂kB

0

k)
1

Ĥ0 − E0 − h̄ω
L̂j |Ω〉

−

(

e2m∆

mM

)

(em∆

mM

)

×〈Ω|x̂i

1

Ĥ0 − E0 + h̄ω
(L̂kB

0

k)
1

Ĥ0 − E0 + h̄ω
L̂j|Ω〉∗.(13)

Inserting two complete sets of states gives

χEB
ij (ω, L̂) = −

(

e3m2

∆

4m2M2

)

B
0

k

∑

m,n

(〈Ω|x̂i|m〉〈m|L̂k|n〉〈n|L̂j |Ω〉

×
1

Em − E0 − h̄ω

1

En − E0 − h̄ω

+(〈Ω|x̂i|m〉〈m|L̂k|n〉〈n|L̂j|Ω〉)∗

×
1

Em − E0 + h̄ω

1

En − E0 + h̄ω
). (14)

For the quadrupole moment contribution we have

χEB
ij (ω, x̂2) =

(

e3m2

∆

4mM2

)

〈Ω|x̂i

(

1

Ĥ − E0 − h̄ω

)

×(x̂2B0

j −B0 · x̂x̂j)|Ω〉

+

(

e3m2

∆

4mM2

)

〈Ω|x̂i

(

1

Ĥ − E0 + h̄ω

)

×(x̂2B0

j −B0 · x̂x̂j)|Ω〉∗. (15)

Inserting a single complete set of states gives

χEB
ij (ω, x̂2) =

(

e3m2

∆

4mM2

)

∑

n

(

1

En − E0 − h̄ω

)

×〈Ω|x̂i|n〉〈n|(x̂
2B0

j −B0 · x̂x̂j)|Ω〉

+

(

e3m2

∆

4mM2

)

∑

n

(

1

En − E0 + h̄ω

)

×(〈Ω|x̂i|n〉〈n|(x̂
2B0

j −B0 · x̂x̂j)|Ω〉)∗. (16)

When the perturbed ground state given by Equation (11)
is substituted into Equations (14) and (16) we arrive at
a final expression for the magneto-electric response func-
tion. To linear order in the static external fields Equa-
tion (14) becomes

χEB
ij (ω, L̂) =

(

e4m2

∆

4m2M2

)

B
0

kE
0

l

∑

m,n

∑

s6=0

(〈0|x̂i|m〉〈m|L̂k|n〉〈n|L̂j |s〉〈s|x̂
l|0〉

×
1

Es − E0

1

Em − E0 − h̄ω

1

En − E0 − h̄ω
)

+(〈0|x̂i|m〉〈m|L̂k|n〉〈n|L̂j |s〉〈s|x̂
l|0〉)∗

×
1

Es − E0

1

Em − E0 + h̄ω

1

En − E0 + h̄ω
). (17)

The corresponding form that Equation (16) takes is

χEB
ij (ω, x̂2) = −

(

e4m2

∆

4mM2

)

B0

kE
0

l

×
∑

n

∑

s6=0

(

1

Es − E0

1

En − E0 − h̄ω

)
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×((〈0|x̂i|n〉〈n|(x̂
2δkj − x̂kx̂j)|s〉〈s|x̂

l|0〉

+〈s|x̂i|n〉〈n|(x̂
2δkj − x̂kx̂j)|0〉〈0|x̂

l|s〉)

(〈0|x̂i|n〉〈n|(x̂
2δkj − x̂kx̂j)|s〉〈s|x̂

l|0〉

+〈s|x̂i|n〉〈n|(x̂
2δkj − x̂kx̂j)|0〉〈0|x̂

l|s〉)∗). (18)

To go further, it is necessary to specify a binding po-
tential so that the energy eigenvalues and eigenfunctions
can be deduced.

2.1 The harmonic oscillator binding potential

As the simplest example one might consider, the harmonic
oscillator with V (x̂) = mω2

0
x̂2/2. This model is both pos-

sible to solve analytically and relevant phenomenologically
in displaying the properties associated with real matter. A
notable feature here is that since the potential is strongly
confining, the perturbed ground state due to the external
static electric field has only the first excited state surviv-
ing in the summation. Using the operator algebra of the
oscillator and the defining relations

x̂i =

√

h̄

2mω0

(â†i + âi) (19)

L̂i = −ih̄/2ǫijk(â
†
j âk − âj â

†
k) (20)

= −ih̄ǫijk â
†
j âk, (21)

the matrix elements can be evaluated explicitly in Equa-
tion (17)

χEB
ij (ω, L̂) =

(

e3m2

∆

m2M2

)(

h̄2e

2mω2

0

)

B0

kE
0

l ǫkibǫjbl

×(
1

E1 − E0 − h̄ω

1

E1 − E0 − h̄ω

+
1

E1 − E0 + h̄ω

1

E1 − E0 + h̄ω
).

=

(

e4m2

∆

ω2

0
m3M2

)

(E0

iB
0

j − (E0 ·B0)δij)

×
ω2 + ω2

0

(ω2

0
− ω2)2

. (22)

In an analogous use of the operator algebra the quadrupole
contribution Equation (18) can be similarly evaluated

χEB
ij (ω, x̂2) = −

(

e4m2

∆

4ω2

0
m3M2

)(

1

ω2

0
− ω2

)

×(4E0

iB
0

j −E0

jB
0

i − (E0 ·B0)δij). (23)

Note here that both contributions have an anti-symmetric
term upon writing the tensor structure in the external
fields as a sum of symmetric and antisymmetric pieces,
which will have a relevance to our later discussion. Both
the angular momentum and quadrupolar contribution are
of the same order as can be seen from their multiplicative

coefficients. The full response function then takes the final
form

χEB
ij (ω) = χEB

ij (ω, L̂) + χEB
ij (ω, x̂2)

= −
e4m2

∆

ω2

0
m3M2

[−
ω2 + ω2

0

(ω2

0
− ω2)2

(E0

iB
0

j − (E0 ·B0)δij)

+
1

ω2

0
− ω2

(E0

iB
0

j −
1

4
E0

jB
0

i −
1

4
(E0 ·B0)δij)].

(24)

3 The non-relativistic hydrogen atom

We now consider the second simplest system, namely the
hydrogen atom. This is a weakly bound system with a
Coulomb potential given by V (r) = −e2/(4πǫ0r) in spher-
ical polar coordinates. Since the proton is very much more
massive than the electron, we can make the replacement
m∆/M → 1, leaving just the reduced mass in all ex-
pressions (which is just the electron mass). Equation (14)
can be evaluated now using the hydrogenic eigenstates
|n, L,m〉 and the energy spectrum En = E1/n

2. One finds

χEB
ij (ω, L̂) = −

(

e3

m2

)

B0

k

2
∏

a=1

∞
∑

na=1

na−1
∑

La=0

La
∑

ma=−La

(

1

En1
− E1 − h̄ω

1

En2
− E1 − h̄ω

)

×(〈Ω|x̂i|n1, L1,m1〉〈n1, L1,m1|L̂k|n2, L2,m2〉

×〈n2, L2,m2|L̂j|Ω〉

+

(

1

En1
− E1 + h̄ω

1

En2
− E1 + h̄ω

)

(〈Ω|x̂i|n1, L1,m1〉〈n1, L1,m1|L̂k|n2, L2,m2〉

×〈n2, L2,m2|L̂j |Ω〉)∗. (25)

For the quadrupole contribution Equation (16) becomes

χEB
ij (ω, x̂2) = +

(

e3

4m2

)

B
0

k

∑

n1,L1,m1

(〈Ω|x̂i|n1, L1,m1〉

×〈n1, L1,m1|x̂
2δkj − x̂kx̂j |Ω〉

1

En1
− E1 − h̄ω

+(〈Ω|x̂i|n1, L1,m1〉

×〈n1, L1,m1|x̂
2δkj − x̂kx̂j |Ω〉)∗

1

En1
− E1 + h̄ω

.

(26)

Because the electron is weakly bound the perturbed ground
state due to the external static electric field requires a full
summation over the principal quantum number

|Ω〉 = |1, 0, 0〉 − eE0

l

∞
∑

n=2

1
∑

m=−1

1

En − E1

|n, 1,m〉

×〈n, 1,m|x̂l|1, 0, 0〉, (27)
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in contrast to the strongly bound harmonic oscillator po-
tential. In Equation (25) the only non-zero elements are
when L1 = L2 = 1 (i.e. just standard selection rules or
addition of angular momentum) and thus reduces to

χEB
ij (ω, L̂) =

(

e4

m2

)

B
0

kE
0

l

1
∑

m1=−1

1
∑

m2=−1

∞
∑

n=2

1
∑

m=−1

〈1, 0, 0|x̂i|n, 1,m1〉〈n, 1,m|x̂l|1, 0, 0〉〈1,m1|L̂k|1,m2〉

×〈1,m2|L̂j |1,m〉
1

(En − E1 − h̄ω)2
1

En − E1

+(〈1, 0, 0|x̂i|n, 1,m1〉〈n, 1,m|x̂l|1, 0, 0〉〈1,m1|L̂k|1,m2〉

×〈1,m2|L̂j |1,m〉)∗
1

(En − E1 + h̄ω)2
1

En − E1

.

(28)

Turning now to the quadrupole case, Equation (26) is
slightly more complicated as the expectation values of the
quadrupole operator requires performing some addition
of angular momenta. Indeed, the quadrupole operator can
be written as a linear superposition of spherical harmonics
Y2,m and Y0,0. This implies non-trivial overlaps of matrix
elements such that the summation over the L eigenvalue
will not completely reduce to a single value as in the pre-
vious case but rather one finds

χEB
ij (ω, x̂2) = −

(

e4

4m2

)

B
0

kE
0

l

∞
∑

n1=2

∞
∑

n=2

3
∑

L=1

2
∑

L1=1

L
∑

m=−L

×

L1
∑

m1=−L1

(

1

En − E1

1

En1
− E1 − h̄ω

)

×(〈1, 0, 0|x̂i|n1, L1,m1〉〈n, L,m|x̂l|1, 0, 0〉

×〈n1, L1,m1|x̂
2δkj − x̂kx̂i|n, L,m〉

〈1, 0, 0|x̂l|n, L,m〉〈n, L,m|x̂i|n1, L1,m1〉

×〈n1, L1,m1|x̂
2δkj − x̂kx̂j |1, 0, 0〉)

+

(

1

En − E1

1

En1
− E1 + h̄ω

)

×((〈1, 0, 0|x̂i|n1, L1,m1〉〈n, L,m|x̂l|1, 0, 0〉

×〈n1, L1,m1|x̂
2δkj − x̂kx̂i|n, L,m〉)∗

+(〈1, 0, 0|x̂l|n, L,m〉〈n, L,m|x̂i|n1, L1,m1〉

×〈n1, L1,m1|x̂
2δkj − x̂kx̂j |1, 0, 0〉)

∗). (29)

Equations (28) and (29) are the main results of this pa-
per. We see that like for the harmonic oscillator, there
is a 1/ω2 behaviour at large frequencies. To avoid the
singularity when h̄ω = En − E1, we supplement a phe-
nomenological line width Γ so that any given excited en-
ergy level can decay to a lower eigenstate by the replace-
ment En → En + iΓ . We have evaluated Equations (28)
and (29) analytically using Mathematica as an expansion
in the principal quantum number. The real part of the sus-
ceptibility is plotted in Figures 2 and 3, as a function of
frequency both for the low and high frequency limits, and
close to the resonance respectively. To do this we have used
numerical data of typical field strengths of |B0

k| = 10T ,

5.0´1015 1.0´1016 1.5´1016 2.0´1016
frequency HHzL

1.´10-10

2.´10-10

3.´10-10
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ReHΧ@1,2DL�HVcΕ0L

Fig. 2. The real part of the (dimensionless) off-diagonal
susceptibility (the bi-anisotropic component χ12 with V =
(4/3)πa3

0 the atomic volume in the ground state) of a hydrogen
atom with parameters E0 = (105V m−1, 0, 0), B0 = (0, 10T, 0),
ω0 = 1016Hz and Γ = 108Hz. This plot shows the zero and
high frequency limits.
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Fig. 3. The real part of the (dimensionless) off-diagonal
susceptibility (the bi-anisotropic component χ12 with V =
(4/3)πa3

0 the atomic volume in the ground state) of a hydrogen
atom with parameters E0 = (105V m−1, 0, 0), B0 = (0, 10T, 0),
ω0 = 1016Hz and Γ = 108Hz. This plot shows the resonant
structure.

|E0

k| = 105V m−1, a resonant frequency of ω0 = 1016Hz
which corresponds to the energy difference between the
first two levels in hydrogen, and a spontaneous decay rate
of Γ ∼ 108s−1. In Figure 4 the imaginary part of the
susceptibility is plotted close to the resonance. Of course,
since the decay rate is very much smaller than the resonant
frequencies there is a huge enhancement in the suscepti-
bility close to resonance.

It is worth pointing out here an issue of the validity of
our calculation with respect to the photoelectric effect [9].
Given that we are driving an atomic system with an elec-
tromagnetic wave at some frequency we may wonder if it
is valid at high frequencies. In this regime the associated
wave vector is also high and the photon can probe the
shorter length scales and transfer more momentum to the
electron. However, if one considers the differential cross
section for photo-electric effect in hydrogen one knows at
high frequency it behaves as 1/ω9. Therefore at high fre-
quency the atom will remain intact and the previous anal-
ysis of the magneto-electric response should remain valid.
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Fig. 4. The imaginary part of the (dimensionless) off-diagonal
susceptibility (the bi-anisotropic component χ12 with V =
(4/3)πa3

0 the atomic volume in the ground state) of a hydrogen
atom with parameters E0 = (105V m−1, 0, 0), B0 = (0, 10T, 0),
ω0 = 1016Hz and Γ = 108Hz. This plot shows the resonant
structure.

3.1 Size of the effect and comparisons

It is instructive to give a numerical estimate of the size of
the response function as compared to the standard electric
susceptibility. To do this, consider the harmonic oscillator
Equations (22) and (23) at zero frequency. Then up to nu-
merical factors (i.e. simple dimensional analysis) we have

|χEB
ij (ω)/(ǫ0c)| ∼

(

e2

ǫ0mω2

0

)(

e2

cm2ω2

0

|B0

k||E
0

l |

)

∼

(

e2

ǫ0mω2

0

)

β (30)

The last factor, β, can be seen too be a dimensionless
number, whilst the first is the standard static electric sus-
ceptibility. Putting in the number leads to a factor of
β ∼ 10−12. This will also be approximately the same for
the hydrogen atom if the optical transition frequencies are
chosen to coincide.

We can compare this scale to experimental [3] and
DFT values [1] found for the change in refractive ∆n as
compared to the absence of static external electromag-
netic fields. For certain large complex molecules values
of ∆n = (N/V )(χ/(ǫ0c)) ∼ 10−11 are found experimen-
tally [3], where N/V is the number density of the sam-
ple. For the helium atom a DFT calculation [1] gives a
refractive index difference of ∆nhelium ∼ 10−17 for a sam-
ple with number density N/V ∼ 1025m−3 evaluated at a
wavelength of λ = 632.8nm. The hydrogen estimate (for
the same number density) from our calculations taking
into account the number density scaling is ∆nhydrogen =
(N/V )(χ/(ǫ0c)) ∼ (N/V )(e2/ǫ0mω2

0
)β ∼ 10−18. It is also

worth mentioning that |χEB
ij (ω)|, as for the harmonic oscil-

lator, will scale as size of the system since it is proportional
to the standard polarisability. For the helium atom, the
static polarisability is αhelium(0) = 0.22× 10−40Coulomb
meter2/Volt, which when divided by ǫ0 gives a volume of
16.6a3

0
. For the hydrogen atom the corresponding volume

is 4a3
0
from which we find a scaling factor of approximately

four between the hydrogen and helium. The precise form
however would have to be fitted empirically with the help
of DFT calculations in order to match on to experimental
values such as found in [3].

4 Summary

We have presented an exact quantum mechanical per-
turbation theory calculation of the magneto-electric re-
sponse function for atomic systems with the simplest bind-
ing potentials, namely the harmonic oscillator and the
Coulomb potential. We have deduced analytic forms for
the magneto-electric response tensor as a function of fre-
quency that can be calculated exactly. A common feature
is that at high frequency they have 1/ω2 behaviour whilst
at low frequency they tend to a constant value. It would
be interesting to try and apply the same method exactly
to the helium atom.

There are interesting implications of this calculation.
Concerning the Feigel effect [5], where a net momentum
density for a medium (Equation (21) in [5]) with an
magneto-electric response function is developed, the re-
sult found there is fourth power divergence in frequency,
which is then simply cut-off. In fact it is only the anti-
symmetric part of the magneto-electric response tensor
that contributes to the momentum. This neglected how-
ever the dependence on frequency and was treated as a
constant. What we see now is that this divergence will be
softened to a quadratic divergence though it will not be
simply washed away altogether. This shows that the as-
sumption of a cut-off at high frequencies for ME is not
justified and that the divergence has to be resolved by
other means, such as done recently in [10].

Acknowledgements

We would like to thank Geert Rikken for useful discussions.
This work was supported by the ANR contract PHOTONIM-
PULS ANR-09-BLAN-0088-01.

References

1. A. Rizzo and S. Coriani, J. Chem. Phys. 119, 11064 (2003).
2. A. Rizzo, D. Shcherbin and K. Ruud, Can. J. Chem.
87:1352-1361 (2009).

3. T. Roth and G. L. J. A. Rikken, Phys. Rev. Lett. 88, 063001
(2002).

4. E. B. Graham and R. E. Raab, Proc. R. Soc. Lond. Ser. A.
390. 73 (1983).

5. A. Feigel, Phys. Rev. Lett. 92 (2004) 020404.
6. B. A. van Tiggelen, G. L. J. A. Rikken and V. Krstic, Phys.
Rev. Lett. 96 (2006) 130402.

7. O. J. Birkeland and I. Brevik, Phys. Rev. E 76, 6, (2007)
066605.

8. X. G. Wen, “Quantum field theory of many-body systems”,
OUP (2004).

9. R. Loudon, “The Quantum Theory of Light”, OUP (2000).
10. S. Kawka and B. A. van Tiggelen, EPL. 89, 11002 (2010).


	1 Introduction
	2 General formulation
	3 The non-relativistic hydrogen atom
	4 Summary

