
University of Massachusetts - Amherst
ScholarWorks@UMass Amherst

Physics Department Faculty Publication Series Physics

2008

Asymptotic Behavior of the Magnetization Near
Critical and Tricritical Points via Ginzburg–Landau
Polynomials
R Ellis

J Machta
University of Massachusetts - Amherst, machta@physics.umass.edu

P Otto

Follow this and additional works at: http://scholarworks.umass.edu/physics_faculty_pubs
Part of the Physics Commons

This Article is brought to you for free and open access by the Physics at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Physics
Department Faculty Publication Series by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

Ellis, R; Machta, J; and Otto, P, "Asymptotic Behavior of the Magnetization Near Critical and Tricritical Points via Ginzburg–Landau
Polynomials" (2008). Physics Department Faculty Publication Series. Paper 1108.
http://scholarworks.umass.edu/physics_faculty_pubs/1108

http://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fphysics_faculty_pubs%2F1108&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.umass.edu/physics_faculty_pubs?utm_source=scholarworks.umass.edu%2Fphysics_faculty_pubs%2F1108&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.umass.edu/physics?utm_source=scholarworks.umass.edu%2Fphysics_faculty_pubs%2F1108&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.umass.edu/physics_faculty_pubs?utm_source=scholarworks.umass.edu%2Fphysics_faculty_pubs%2F1108&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=scholarworks.umass.edu%2Fphysics_faculty_pubs%2F1108&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.umass.edu/physics_faculty_pubs/1108?utm_source=scholarworks.umass.edu%2Fphysics_faculty_pubs%2F1108&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu


Ginzburg-Landau Polynomials and the
Asymptotic Behavior of the Magnetization

Near Critical and Tricritical Points

Richard S. Ellis 1

rsellis@math.umass.edu

Jonathan Machta 2

machta@physics.umass.edu

Peter Tak-Hun Otto 3

potto@willamette.edu

1 Department of Mathematics and Statistics
University of Massachusetts

Amherst, MA 01003

2 Department of Physics
University of Massachusetts

Amherst, MA 01003

3 Department of Mathematics
Willamette University

Salem, OR 97301

May 9, 2008

Abstract

The purpose of this paper is to prove unexpected connections among the asymptotic
behavior of the magnetization, the structure of the phase transitions, and a class of polyno-
mials that we call the Ginzburg-Landau polynomials. The model under study is a mean-
field version of an important lattice-spin model due to Blume and Capel. It is defined by
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a probability distribution that depends on the parameters β and K, which represent, re-
spectively, the inverse temperature and the interaction strength. Our main focus is on the
asymptotic behavior of the magnetization m(βn,Kn) for appropriate sequences (βn,Kn)
that converge to a second-order point or to the tricritical point of the model and that lie in-
side various subsets of the phase-coexistence region. The main result states that as (βn,Kn)
converges to one of these points (β,K), m(βn,Kn) ∼ x̄|β − βn|γ → 0. In this formula
γ is a positive constant, and x̄ is the unique positive, global minimum point of a certain
polynomial g. We call g the Ginzburg-Landau polynomial because of its close connec-
tion with the Ginzburg-Landau phenomenology of critical phenomena. This polynomial
arises as a limit of appropriately scaled free-energy functionals, the global minimum points
of which define the phase-transition structure of the model. In the asymptotic formula
m(βn,Kn) ∼ x̄|β − βn|γ , both γ and x̄ depend on the sequence (βn,Kn). Six exam-
ples of such sequences are considered, each leading to a different asymptotic behavior of
m(βn,Kn). Our approach to studying the asymptotic behavior of the magnetization has
three advantages. First, for each sequence (βn,Kn) under study, the structure of the global
minimum points of the associated Ginzburg-Landau polynomial mirrors the structure of the
global minimum points of the free-energy functional in the region through which (βn,Kn)
passes and thus reflects the phase-transition structure of the model in that region. In this
way the properties of the Ginzburg-Landau polynomials make rigorous the predictions of
the Ginzburg-Landau phenomenology of critical phenomena. Second, we use these prop-
erties to discover new features of the first-order curve in a neighborhood of the tricritical
point. Third, the predictions of the heuristic scaling theory of the tricritical point are made
rigorous by the asymptotic formula m(βn,Kn) ∼ x̄|β − βn|γ , which is the main result in
the paper.

American Mathematical Society 2000 Subject Classifications. Primary 82B20

Key words and phrases: Ginzburg-Landau phenomenology, second-order phase transition, first-
order phase transition, tricritical point, scaling theory, Blume-Capel model

1 Introduction
In this paper we prove unexpected connections among the asymptotic behavior of the mag-
netization, the structure of the phase transitions, and a class of polynomials that we call the
Ginzburg-Landau polynomials. The investigation is carried out for a mean-field version of an
important lattice-spin model due to Blume and Capel, to which we refer as the B-C model
[2, 6, 7, 8]. This mean-field model is equivalent to the B-C model on the complete graph on
n vertices. It is certainly one of the simplest models that exhibit the following intricate phase-
transition structure: a curve of second-order points; a curve of first-order points; and a tricritical
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point, which separates the two curves. A generalization of the B-C model is studied in [3].
The main result in the present paper is Theorem 4.2, a general theorem that gives the asymp-

totic behavior of the magnetization in the mean-field B-C model for suitable sequences. With
only changes in notation, the theorem also applies to other mean-field models including the
Curie-Weiss model [12] and the Curie-Weiss-Potts model [16].

The mean-field B-C model is defined by a canonical ensemble that we denote by PN,β,K ;
N equals the number of spins, β is the inverse temperature, and K is the interaction strength.
PN,β,K is defined in terms of the Hamiltonian

HN,K(ω) =
N∑
j=1

ω2
j −

K

N

(
N∑
j=1

ωj

)2

,

in which ωj represents the spin at site j ∈ {1, 2, . . . , N} and takes values in Λ = {1, 0,−1}. The
configuration space for the model is the set ΛN containing all sequences ω = (ω1, ω2, . . . , ωN)
with each ωj ∈ Λ.

Before introducing the results in this paper, we summarize the phase-transition structure
of the model. For β > 0 and K > 0 we denote by Mβ,K the set of equilibrium values
of the magnetization. Mβ,K coincides with the set of zeroes of the rate function in a large
deviation principle for the spin per site [Thm. 2.1(a)] and with the set of global minimum points
of the free-energy functional Gβ,K , which is related to the rate function via a Legendre-Fenchel
transform [see (2.6)]. It is known from heuristic arguments and is proved in [15] that there
exists a critical inverse temperature βc = log 4 and that for 0 < β ≤ βc there exists a quantity
K(β) and for β > βc there exists a quantity K1(β) having the following properties:

1. For 0 < β ≤ βc and 0 < K ≤ K(β),Mβ,K consists of the unique pure phase 0.

2. For 0 < β ≤ βc and K > K(β),Mβ,K consists of two symmetric, nonzero values of the
magnetization ±m(β,K).

3. For 0 < β ≤ βc, Mβ,K undergoes a continuous bifurcation at K = K(β), changing
continuously from {0} for K ≤ K(β) to {±m(β,K)} for K > K(β). This continuous
bifurcation corresponds to a second-order phase transition.

4. For β > βc and 0 < K < K1(β),Mβ,K consists of the unique pure phase 0.

5. For β > βc and K = K1(β),Mβ,K consists of 0 and two symmetric, nonzero values of
the magnetization ±m(β,K1(β)).

6. For β > βc and K > K1(β), Mβ,K consists of two symmetric, nonzero values of the
magnetization ±m(β,K).
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7. For β > βc,Mβ,K undergoes a discontinuous bifurcation at K = K1(β), changing dis-
continuously from {0} forK < K(β) to {0,±m(β,K)} forK = K1(β) to {±m(β,K)}
for K > K1(β). This discontinuous bifurcation corresponds to a first-order phase transi-
tion.

Because of items 3 and 7, we refer to the curve {(β,K(β)), 0 < β < βc} as the second-
order curve and to the curve {(β,K1(β)), β > βc} as the first-order curve. Points on the
second-order curve are called second-order points, and points on the first-order curve first-order
points. The point (βc, K(βc)) = (log 4, 3/2 log 4) separates the second-order curve from the
first-order curve and is called the tricritical point. The phase-coexistence region consists of all
points in the positive β-K quadrant for which Mβ,K consists of more than one value. Thus
this region consists of all (β,K) above the second-order curve, above the tricritical point, on
the first-order curve, and above the first-order curve; i.e., all (β,K) satisfying 0 < β ≤ βc and
K > K(β) and satisfying β > βc and K ≥ K1(β). The sets that describe the phase-transition
structure of the model are shown in Figure 1.

1.0

1.20.8

1.4

1.6

1.6

2.0

1.2

K(β)
 

β

K(β)
 

K (β)
 

K(β )
1

K

β

c

c

Figure 1: The sets that describe the phase-transition structure of the BEG model: the second-order curve
{(β,K(β)), 0 < β < βc}, the first-order curve {(β,K1(β)), β > βc}, and the tricritical point (βc,K(βc)).
The phase-coexistence region consists of all (β,K) above the second-order curve, above the tricritical point, on
the first-order curve, and above the first-order curve. The extension of the second-order curve to β > βc is called
the spinodal curve.

We now turn to the main focus of this paper, which is the asymptotic behavior of the mag-
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netization m(βn, Kn) for appropriate sequences (βn, Kn) that converge either to a second-order
point or to the tricritical point from various subsets of the phase-coexistence region. In the case
of second-order points we consider two such sequences in Theorems 3.1 and 3.2, and in the
case of the tricritical point we consider four such sequences in Theorems 5.1–5.4. Denoting the
second-order point or the tricritical point by (β,K), in each case we prove as a consequence of
the general result in Theorem 4.2 that m(βn, Kn)→ 0 according to the asymptotic formula

m(βn, Kn) ∼ x̄|β − βn|γ; i.e. lim
n→∞

|β − βn|−γm(βn, Kn) = x̄. (1.1)

In this formula γ is a positive constant, and x̄ is the unique positive, global minimum point
of a certain polynomial g. We call g the Ginzburg-Landau polynomial because of its close
connection with the Ginzburg-Landau phenomenology of critical phenomena [17]. Both γ and
x̄ depend on the sequence (βn, Kn). The exponent γ and the polynomial g arise via the limit
of suitably scaled free-energy functionals; specifically, for appropriate choices of u ∈ R and
γ > 0 and uniformly for x in compact subsets of R

lim
n→∞

n1−uGβn,Kn(x/nγ) = g(x). (1.2)

The Ginzburg-Landau polynomials g play several roles in this paper. First, the structure
of the set of global minimum points of each g mirrors the structure of the set of global mini-
mum points of the free-energy functional in the subset of the phase-coexistence region through
which the corresponding sequence (βn, Kn) passes. Details of this mirroring are given in the
discussions leading up to Theorem 3.1 and Theorem 5.2; of all the sequences that we consider,
the sequence considered in the latter theorem shows the most varied behavior. Since the global
minimum points of the free-energy functional determine the phase-transition structure of the
model, one can also investigate the phase-transition structure using properties of the Ginzburg-
Landau polynomials, which are polynomials of degree 4 or 6 and thus have a much simpler
form than the free-energy functional. In this way, properties of the Ginzburg-Landau polynomi-
als make rigorous the predictions of the Ginzburg-Landau phenomenology of critical phenom-
ena, which replaces appropriate thermodynamic quantities by the first few terms of their Taylor
expansions in an ad hoc manner. An example of such an application of the Ginzburg-Landau
polynomials is given in section 6, where we use the polynomials to discover new features of
the first-order curve. The Ginzburg-Landau phenomenology is used in section 2 to motivate the
phase-transition structure of the model.

The Ginzburg-Landau polynomials are also intimately related to probabilistic limit theorems
for the total spin SN with respect to the canonical ensemble PN,β,K . These limit theorems are
studied in the sequel to the present paper when N = n [14]; i.e., when the system size N
coincides with the index n parametrizing the sequence (βn, Kn). For each sequence (βn, Kn)
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for which the asymptotic behavior of m(βn, Kn) is studied, there exists γ0 ∈ (0, 1/4] such that
up to a multiplicative constant, the exponential of the associated Ginzburg-Landau polynomial
is the limiting density in a scaling limit for Sn/n1−γ0 . This limit is supplemented by other
scaling limits for γ 6= γ0. In addition, for all γ ∈ (0, γ0), up to an additive constant the
Ginzburg-Landau polynomial is the rate function in a moderate deviation principle (MDP) for
Sn/n

1−γ ., After deriving the MDPs in [14], we apply them to study refined asymptotics of the
spin. This fascinating feature is discussed at the end of the introduction.

The connection with probabilistic limit theorems reveals a close relationship between the
present study and our previous paper [11]. In that paper we reveal the intricate structure of
the phase transitions in the BEG model by proving a total of 18 scaling limits and 18 MDPs
for Sn/n1−γ . These results are obtained for appropriate sequences (βn, Kn) converging either
to points in the single-phase region located under the second-order curve (1 scaling limit and
1 MDP), to second-order points (4 scaling limits and 4 MDPs), and to the tricritical point (13
scaling limits and 13 MDPs). Our goal in that paper was to obtain the maximal number of
probabilistic limit theorems. In order to achieve that goal, we chose sequences (βn, Kn) for
which certain terms in a Taylor expansion have appropriate large-n behavior. However, the
physical significance of those sequences is not obvious.

By contrast, in the present paper we focus, not on probabilistic limit theorems as in [11, 14],
but on the asymptotic behavior of the magnetization using physically significant sequences
(βn, Kn). These sequences converge either to second-order points or to the tricritical point
from specific subsets of the phase-coexistence region. Doing so allows us to use properties
of the Ginzburg-Landau polynomials in order to study the phase transitions in these various
subsets.

This paper puts on a rigorous footing the idea, first introduced by Ginzburg and Landau,
that low-order polynomial approximations to the free energy functional give correct asymptotic
results near continuous phase transitions for mean-field models [17]. The use of sequences
(βn, Kn) that approach second-order points or the tricritical point permits us to establish the
validity of truncating the expansion of the free-energy functional at an appropriate low order.
The higher order terms are driven to zero by a power of n and are shown to be asymptotically
irrelevant. While the renormalization group methodology also demonstrates the irrelevance of
higher order terms in the expansion of the free-energy functional, it does so via a different route
that depends on heuristics. By contrast, our approach is rigorous and shows in (1.2) how to
obtain the Ginzburg-Landau polynomial as a limit of suitably scaled free-energy functionals.
No heuristic approximations appear.

Let (βn, Kn) be any particular sequence converging to a second-order point or the tricritical
point from the phase-coexistence region and denote the limiting point by (β,K). It is not
difficult to obtain an asymptotic formula expressing the rate at which m(βn, Kn) converges to
0. Since m(βn, Kn) is the unique positive minimum point of Gβn,Kn , it solves the equation
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G′βn,Kn(m(βn, Kn)) = 0. As we illustrate in appendix B in two examples, expanding G′βn,Kn in
a Taylor series of appropriate order, one obtains the formula m(βn, Kn) ∼ x̄|β − βn|γ for some
x̄ > 0 and γ > 0. However, this method gives only the functional form for x̄, not associating
it with the model via the Ginzburg-Landau polynomial. This is in contrast to our general result
in Theorem 4.2. That result identifies x̄ as the unique positive, global minimum point of the
Ginzburg-Landau polynomial, using the uniform convergence in (1.2). The proof of that result
completely avoids Taylor expansions, making use of the fact that under appropriate conditions,
the positive global minimum points of n-dependent minimization problems converge to the
positive global minimum point of a limiting minimization problem when such a minimum point
is unique.

Our work is also closely related to the scaling theory for critical and tricritical points. By
choosing sequences that approach second-order points or the tricritical point from various di-
rections and at various rates, we are able to verify a number of predictions of scaling theory.
The sequences that approach the tricritical point reveal the subtle geometry of the crossover
between critical and tricritical behavior described in Riedel’s tricritical scaling theory [22]. In
section 7 we will see that a proper application of scaling theory near the tricritical point requires
that the scaling parameters be defined in a curvilinear coordinate system, an idea proposed in
[22] but, to our knowledge, not previously explored.

Some of the results proved here are contained in the work of Capel and collaborators [6,
7, 8, 9, 19, 20, 21]. These papers introduce the mean-field B-C model and provide a general
framework for studying mean-field models and obtaining the thermodynamic properties of these
systems. The work of Capel and his collaborators does not encompass the contributions of
the present paper, which include a new and rigorous methodology involving Ginzburg-Landau
polynomials for treating mean-field models. We believe that this methodology will be valuable
in future mathematical investigations of related systems in statistical mechanics.

In order to highlight our new results, we summarize them for the six sequences considered
in Theorems 3.1–3.2 and in Theorems 5.1–5.4. Two of the six cases involve the spinodal curve,
which is the extension of the second-order curve {(β,K(β)), 0 < β < βc} to values β > βc. In
cases 1, 2, and 6 the limiting Ginzburg-Landau polynomial has degree 4 while in cases 3, 4, and
5 the limiting Ginzburg-Landau polynomial has degree 6. In each case the quantity x̄ equals the
unique positive, global minimum point of the associated Ginzburg-Landau polynomial. In the
following six items the asymptotic behavior of m(βn, Kn) → 0 is expressed as an appropriate
function of β − βn.

1. In case 1 the sequence (βn, Kn) converges to a second-order point (β,K(β)) along a
ray that lies in the phase-coexistence region. This ray is above the tangent line to the
second-order curve at that point. Given 0 < β < βc, α > 0, b ∈ {1, 0,−1}, and
k ∈ R satisfying K ′(β)b − k < 0, the sequence is defined by βn = β + b/nα and
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Kn = K(β) + k/nα. As described in Theorem 3.1, m(βn, Kn) ∼ x̄/nα/2. If b 6= 0, then
this becomes m(βn, Kn) ∼ x̄|β − βn|1/2.

2. In case 2 the sequence (βn, Kn) converges to a second-order point (β,K(β)) along a
curve that lies in the phase-coexistence region. It coincides with the second-order curve
to order p− 1 in powers of βn− β, where p ≥ 2 is an integer. Hence the two curves have
the same tangent at (β,K(β)). Parametrized by α > 0, b ∈ {1,−1}, an integer p ≥ 2,
and a real number ` satisfying (K(p)(β)− `)bp < 0, the sequence is defined by

βn = β + b/nα and Kn = K(β) +

p−1∑
j=1

K(j)(β)bj/(j!njα) + `bp/(p!npα). (1.3)

As described in Theorem 3.2, m(βn, Kn) ∼ x̄/npα/2 = x̄|β − βn|p/2.

3. In case 3 the sequence (βn, Kn) converges to the tricritical point (βc, K(βc)) along a
ray that lies in the phase-coexistence region. The ray is above the tangent line to the
phase-transition curve at the tricritical point. The sequence is defined as in case 1 with β
replaced by βc. As described in Theorem 5.1, m(βn, Kn) ∼ x̄/nα/4. If b 6= 0, then this
becomes m(βn, Kn) ∼ x̄|βc − βn|1/4.

4. In case 4 the sequence (βn, Kn) converges to the tricritical point (βc, K(βc)) along a
curve that lies in the phase-coexistence region and is tangent to the spinodal curve at the
tricritical point. Given Conjectures 1–3 in section 6, in a neighborhood of the tricritical
point this curve either lies above the first-order curve or coincides with that curve to order
2 in powers of β − βc. The sequence is defined in (1.4) in terms of a curvature parameter
` and another parameter ˜̀, and four different cases are listed in items 4a–4d after the
definition (1.4). As described in Theorem 5.2, in all four cases m(βn, Kn) ∼ x̄/nα/2 =
x̄(βn − βc)1/2.

5. In case 5 the sequence (βn, Kn) converges to the tricritical point (βc, K(βc)) along a
curve that lies in the phase-coexistence region and coincides with the second-order curve
to order 2 in powers of β − βc. Hence the two curves have the same tangent at the
tricritical point. The sequence is defined as in (1.4) with βn = βc + 1/nα replaced
by βn = βc − 1/nα and with ˜̀ = 0. As described in Theorem 5.3, for ` > K ′′(βc),
m(βn, Kn) ∼ x̄/nα/2 = x̄(βc − βn)1/2.

6. In case 6 the sequence (βn, Kn) converges to the tricritical point (βc, K(βc)) along a
curve that lies in the phase-coexistence region and coincides with the second-order curve
to order p − 1 in powers of β − βc, where p ≥ 3 is an integer. Hence the two curves
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have the same tangent at the tricritical point. The sequence is defined as in (1.3) with
b = −1 and β replaced by βc. As described in Theorem 5.4, for appropriate choices of
` 6= K(p)(βc), m(βn, Kn) ∼ x̄/n(p−1)α/2 = x̄(βc − βn)(p−1)/2.

Possible paths followed by the sequences in items 1–6 are shown in Figure 2. Two different
paths are shown for each of the sequences in items 1, 2, and 3, four different paths for the
sequences in item 4, and one path for each of the sequences in items 5 and 6. We believe that
modulo uninteresting scale changes, these are all the sequences of the form βn = β + b/nα and
Kn equal to K(β) plus a polynomial in 1/nα, where (β,K(β)) is either a second-order point
or the tricritical point and for which m(βn, Kn) > 0.

It is interesting to compare the sequences in items 1 and 3 and the sequences in items 2
and 6. Although in both cases the sequences are defined similarly, the asymptotic formulas
for m(βn, Kn) involve different powers of n. From the viewpoint of the scaling theory for
critical phenomena, the discrepancies arise because the sequences in items 1 and 2 converge
to a second-order point while those in items 3 and 6 converge to the tricritical point; this is
discussed in section 7.

Table 1 summarizes the asymptotic behavior of m(βn, Kn) for the sequences depicted in
Figure 2 and indicates the theorem where the asymptotic behavior is proved.

sequence converges to theorem asymptotic behavior
ofm(βn,Kn)

1 second-order point Thm. 3.1 m(βn, Kn) ∼ x̄|β − βn|1/2
2 second-order point Thm. 3.2 m(βn, Kn) ∼ x̄|β − βn|p/2
3 tricritical point Thm. 5.1 m(βn, Kn) ∼ x̄|βc − βn|1/4

4a–4d tricritical point Thm. 5.2 m(βn, Kn) ∼ x̄(βn − βc)1/2

5 tricritical point Thm. 5.3 m(βn, Kn) ∼ x̄(βc − βn)1/2

6 tricritical point Thm. 5.4 m(βn, Kn) ∼ x̄(βc − βn)(p−1)/2

Table 1: Asymptotic behavior of m(βn,Kn) → 0 for the sequences in Figure 2. For sequences 1 and 3 the
asymptotic formula is valid provided b 6= 0 in the definition of the sequence.

The sequences mentioned in item 4 and labeled 4a–4d in Figure 2 are particularly interest-
ing. Parameterized by α > 0, a curvature parameter ` ∈ R, and another parameter ˜̀∈ R, these
sequences are defined by

βn = βc + 1/nα and Kn = K(βc) +K ′(βc)/n
α + `/(2n2α) + ˜̀/(6n3α). (1.4)

For appropriate choices of ` and ˜̀, these sequences converge to the tricritical point while passing
through the following interesting subsets of the phase-coexistence region.
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Figure 2: Possible paths for sequences converging to a second-order point and to the tricritical point. The curves
labeled 1, 2, 3, 4a–4d, 5, and 6 are discussed in the respective items 1, 2, 3, 4, 5, and 6. The sequences on the
curves labeled 4a–4d are defined in (1.4) and are discussed in more detail in the respective items 4a–4d appearing
after (1.4).

4a. For ` > K ′′(βc), (βn, Kn) passes through the phase-coexistence region located above the
spinodal curve.

4b. For ` = K ′′(βc), (βn, Kn) converges to the tricritical point along a curve that coincides
with the spinodal curve to order 2 in powers of β − βc.

4c. For ` = `c = K ′′(βc)− 5/(4βc), (βn, Kn) converges to the tricritical point along a curve
that coincides, to order 2 in powers of β − βc, with what we conjecture is the first-order
curve.

4d. For ` in the open interval (`c, K
′′(βc)), (βn, Kn) converges to the tricritical point along

a curve that passes between what we conjecture is the first-order curve and the spinodal
curve in a neighborhood of the tricritical point.

In Figure 2 we do not show the curve along which (βn, Kn) converges to the tricritical point
when ` < `c and ˜̀ ∈ R. This curve is conjectured to lie in the single-phase region under the
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first-order curve.
A number of examples are given in the paper of how the structure of the set of global

minimum points of the associated Ginzburg-Landau polynomials g mirrors the phase-transition
structure of the subsets through which (βn, Kn) passes. For example, for the sequence defined
in (1.4), we have the following picture. In all cases g depends only on `, not on ˜̀.

1. For ` > `c and any ˜̀ ∈ R, the global minimum points of g are a symmetric, nonzero
pair ±x̄(`), mirroring the fact that for (β,K) above the first-order curve the equilibrium
values of the magnetization are the symmetric, nonzero pair ±m(β,K).

2. For ` = `c and all sufficiently large ˜̀, the global minimum points of g are 0 and a symmet-
ric, nonzero pair±x̄(`c), mirroring the fact that for (β,K) = (β,K1(β)) on the first-order
curve the equilibrium values of the magnetization are 0 and the symmetric, nonzero pair
±m(β,K1(β)).

3. For ` < `c and any ˜̀∈ R, g has a unique global minimum point at 0, mirroring the fact
that for (β,K) under the first-order curve there is a unique pure phase at 0.

The values of the magnetization and the positive, global minimum points x̄(`) are connected
through the main result of the paper, which is that as (βn, Kn) converges to the tricritical point
m(βn, Kn) ∼ x̄(`)/nα/4 = x̄(`)(βc − βn)1/4.

In section 6 we reverse this procedure, using properties of the appropriate Ginzburg-Landau
polynomials not to mirror, but to predict features of the phase-transition structure. There we
argue that at βc the first-order curve defined by (β,K1(β)) and the spinodal curve have the
same right-hand tangent, that K ′′1 (βc) = `c < K ′′(βc), and that K ′′′1 (βc) > 0 (see Conjectures
1, 2, and 3). These conjectures are used to verify the asymptotic behavior of m(βn, Kn) → 0
given in part (c) of Theorem 5.2 when ` satisfies `c ≤ ` < K ′′(βc).

We end the introduction by previewing our results on the refined asymptotics of SN when
the system size N coincides with the index n parametrizing the sequence (βn, Kn). These
asymptotics are the main focus of the sequel to the present paper [14]. These refined asymp-
totics reveal a fascinating relationship between the asymptotic formulas form(βn, Kn) obtained
here and the finite-size expectation En,βn,Kn{|Sn/n|}, where En,βn,Kn denotes expectation with
respect to Pn,βn,Kn . In order to illustrate this relationship, we focus on the sequence (βn, Kn)
in Theorem 3.1 that converges to a second-order point (β,K(β)). A general result covering the
other five sequences considered in the present paper is given in [14].

According to part (c) of Theorem 3.1, for any α > 0,m(βn, Kn) has the asymptotic behavior
m(βn, Kn) ∼ x̄/nα/2, where x̄ is the positive global minimum point of the associated Ginzburg-
Landau polynomial. When α ∈ (0, 1/2), we prove in [14] that m(βn, Kn) is asymptotic to the
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expectation of |Sn/n|; i.e.,

En,βn,Kn{|Sn/n|} ∼ m(βn, Kn) ∼ x̄/nα/2.

A more refined statement is that when α ∈ (0, 1/2), the probability distribution Pn,βn,Kn{Sn/n ∈
dx} is sharply peaked at ±m(βn, Kn) as n→∞. We prove this by considering the asymptotic
behavior of the expectation

En,βn,Kn{| |Sn/n| −m(βn, Kn)|},

showing that the fluctuations of |Sn/n| around m(βn, Kn) as measured by this expectation
are asymptotic to z̄/n1/2−α/2, where z̄ > 0 is given explicitly. Since α ∈ (0, 1/2), the rate
z̄/n1/2−α/2 at which this expectation converges to 0 is much faster than the rate x̄/nα/2 at which
m(βn, Kn) converges to 0. In this case (βn, Kn) → (β,K(β)) slowly, and the system is in the
phase-coexistence regime, where it is effectively infinite. Interestingly, the range α ∈ (0, 1/2),
for which m(βn, Kn) and En,βn,Kn{|Sn/n|} have the same asymptotic behavior, is precisely
the range of α for which we have a moderate deviation principle for Sn/n1−γ for appropriate
γ ∈ (0, 1/4). The moderate deviation principle plays a key role in the proofs of the asymptotic
behaviors of the two expectations mentioned in this paragraph.

On the other hand, when α > 1/2, m(βn, Kn) is not related to the finite-size expectation
En,βn,Kn{|Sn/n|}. In the α > 1/2 regime, En,βn,Kn{|Sn/n|} is asymptotic to ȳ/n1/4, where
ȳ > 0 is given explicitly. In this case the fluctuations of |Sn/n| as measured by this expectation
are much larger than m(βn, Kn), which converges to 0 at the much faster rate x̄/nα/2. When
α > 1/2, (βn, Kn)→ (β,K(β)) quickly, and the system is in the critical regime. The theory of
finite-size scaling predicts that when α > 1/2, critical singularities are controlled by the size of
the system rather than by the distance in parameter space from the phase transition [1, 5, 10, 24].

The contents of the present paper are as follows. In section 2 we use the Ginzburg-Landau
phenomenology of critical phenomena to motivate the phase-transition structure of the model.
We then present two theorems proved in [15] justifying the predictions of this phenomenology.
In section 3 we illustrate the use of our main result on the asymptotic behavior of the magneti-
zation by applying it to two particular sequence (βn, Kn) converging to second-order points. In
section 4 we prove our main result (1.1) on the asymptotic behavior of m(βn, Kn) → 0 [Thm.
4.2]. In section 5 that result is applied to four different sequences (βn, Kn) converging to the
tricritical point from different subsets of the phase-coexistence region. Section 6 is devoted to
using the properties of appropriate Ginzburg-Landau polynomials to discover new properties
of the first-order curve. In section 7 we relate the results obtained earlier in this paper to the
scaling theory of critical phenomena.

The paper also has two appendices. In appendix A we collect a number of results on poly-
nomials of degree 6 needed earlier in the paper. In appendix B we illustrate another technique
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for determining the asymptotic behavior of m(βn, Kn) → 0 for two of the sequences consid-
ered earlier in the paper. This technique is based on the fact that m(βn, Kn) is a positive global
minimum point of the associated free-energy functional and thus a positive zero of the deriva-
tive of this function. Despite the naturalness of this characterization of m(βn, Kn), the proofs
of the asymptotic behavior of m(βn, Kn) given in this appendix are much more complicated
and the respective theorems give less information than the proofs in the main part of the paper
that are based on properties of the Ginzburg-Landau polynomials. This emphasizes once again
the elegance of the approach in Theorem 4.2, where we use properties of these polynomials to
deduce the asymptotic behavior of m(βn, Kn).

Acknowledgments. The research of Richard S. Ellis is supported in part by a grant from the
National Science Foundation (NSF-DMS-0604071).

2 Phase-Transition Structure of the BEG Model
After defining the mean-field B-C model, we introduce a function Gβ,K , called the free-energy
functional. The global minimum points of this function define the equilibrium values of the
magnetization, and the minimum value of this function over R gives the canonical free energy.
We then apply the Ginzburg-Landau phenomenology to Gβ,K in order to motivate the phase-
transition structure of the model. The predictions of the Ginzburg-Landau phenomenology are
shown to be correct in Theorems 2.2 and 2.3.

The mean-field B-C model is a lattice-spin model defined on the complete graph on N
vertices 1, 2, . . . , N . The spin at site j ∈ {1, 2, . . . , N} is denoted by ωj , a quantity taking
values in Λ = {1, 0,−1}. The configuration space for the model is the set ΛN containing
all sequences ω = (ω1, ω2, . . . , ωN) with each ωj ∈ Λ. In terms of a positive parameter K
representing the interaction strength, the Hamiltonian is defined by

HN,K(ω) =
N∑
j=1

ω2
j −

K

N

(
N∑
j=1

ωj

)2

for each ω ∈ ΛN . Let PN be the product measure on ΛN with identical one-dimensional
marginals ρ = 1

3
(δ−1 + δ0 + δ1). Thus PN assigns the probability 3−N to each ω ∈ ΛN . For

N ∈ N, inverse temperature β > 0, and K > 0, the canonical ensemble for the BEG model is
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the sequence of probability measures that assign to each subset B of ΛN the probability

PN,β,K(B) =
1

ZN(β,K)
·
∫
B

exp[−βHN,K ] dPN (2.1)

=
1

ZN(β,K)
·
∑
ω∈B

exp[−βHN,K(ω)] · 3−N .

In this formula ZN(β,K) is the partition function equal to∫
ΛN

exp[−βHN,K ] dPN =
∑
ω∈ΛN

exp[−βHN,K(ω)] · 3−N .

The analysis of the canonical ensemble PN,β,K is facilitated by expressing it in the form
of a Curie-Weiss-type model. This is done by absorbing the noninteracting component of the
Hamiltonian into the product measure PN , obtaining

PN,β,K(dω) =
1

Z̃N(β,K)
· exp

[
NβK

(
SN(ω)

N

)2
]
PN,β(dω). (2.2)

In this formula SN(ω) equals the total spin
∑N

j=1 ωj , PN,β is the product measure on ΛN with
identical one-dimensional marginals

ρβ(dωj) =
1

Z(β)
· exp(−βω2

j ) ρ(dωj), (2.3)

Z(β) is the normalization equal to
∫

Λ
exp(−βω2

j )ρ(dωj) = (1 + 2e−β)/3, and Z̃N(β,K) is the
normalization equal to [Z(β)]N/ZN(β,K).

When rewritten as in (2.2), PN,β,K is reminiscent of the canonical ensemble for the Curie-
Weiss model [12, §IV.4]. However, PN,β,K is much more complicated because of the β-dependent
product measure PN,β and the presence of the parameter K. As we will show in this section,
the canonical ensemble PN,β,K for the mean-field B-C model gives rise to a second-order phase
transition, a first-order phase transition, and a tricritical point, which separates the two phase
transitions and is one of the main focuses of the present paper.

The starting point of the analysis of the phase-transition structure of the mean-field B-C
model is the large deviation principle (LDP) satisfied by the spin per site SN/N with respect
to PN,β,K . In order to state the form of the rate function, we introduce the cumulant generating
function cβ of the measure ρβ defined in (2.3); for t ∈ R this function is defined by

cβ(t) = log

∫
Λ

exp(tω1) ρβ(dω1) (2.4)

= log

(
1 + e−β(et + e−t)

1 + 2e−β

)
.
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We also introduce the Legendre-Fenchel transform of cβ , which is defined for x ∈ [−1, 1] by

Jβ(x) = sup
t∈R
{tx− cβ(t)};

The smallest interval containing the range of SN/N is [−1, 1], and Jβ(x) is finite for x in that
interval. Jβ is the rate function in Cramér’s theorem, which is the LDP for Sn/n with respect
to the product measures PN,β [12, Thm. II.4.1] and is one of the components of the proof of
the LDP for SN/N with respect to PN,β,K . This LDP and a related limit are stated in parts (a)
and (b) of the next theorem. The theorem is proved like Theorem 3.1 in [4] and Theorem 2.4 in
[13].

Theorem 2.1. For all β > 0 and K > 0 the following conclusions hold.
(a) With respect to the canonical ensemble PN,β,K , SN/N satisfies the LDP on [−1, 1] with

rate function
Iβ,K(x) = Jβ(x)− βKx2 − inf

y∈[−1,1]
{Jβ(y)− βKy2}.

In particular, for any closed set F in [−1, 1] we have the large deviation upper bound

lim sup
N→∞

1

N
logPN,β,K{SN/N ∈ F} ≤ −Iβ,K(F ) = − inf

x∈F
Iβ,K(x).

(b) We define the canonical free energy

ϕ(β,K) = − lim
N→∞

1

N
logZN(β,K),

where ZN(β,K) is the partition function defined in (2.1). Then ϕ(β,K) = infy∈R{Jβ(y) −
βKy2}.

By definition, the infimum of Iβ,K over [−1, 1] equals 0. We define the set of equilibrium
macrostates by

Mβ,K = {x ∈ [−1, 1] : Iβ,K(x) = 0}.

In order to justify this definition, let F be any closed subset of [−1, 1] that is disjoint from the
closed setMβ,K . Then Iβ,K(F ) > 0, and the large deviation upper bound implies that for all
sufficiently large n

PN,β,K{SN/N ∈ F} ≤ exp[−NIβ,K(F )/2]→ 0. (2.5)

It follows that those x ∈ [−1, 1] satisfying Iβ,K(x) > 0 have an exponentially small probability
of being observed in the canonical ensemble. Each x ∈ Mβ,K is a global minimum point of
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Iβ,K and represents an equilibrium value of the magnetization. In [15], where Theorems 2.2
and 2.3 are proved, the setMβ,K was denoted by Ẽβ,K .

For x ∈ R we define
Gβ,K(x) = βKx2 − cβ(2βKx). (2.6)

The calculation of the zeroes of Iβ,K — equivalently, the global minimum points of Jβ,K(x)−
βKx2 — is greatly facilitated by the following observations made in Proposition 3.4 in [15]:

1. The global minimum points of Jβ,K(x)−βKx2 coincide with the global minimum points
of Gβ,K , which are much easier to calculate.

2. The minimum values minx∈R{Jβ,K(x)− βKx2} and minx∈RGβ,K(x) coincide and both
equal the canonical free energy ϕ(β,K) defined in part (b) of Theorem 2.1.

Item 1 gives the alternate characterization

Mβ,K = {x ∈ [−1, 1] : x is a global minimum point of Gβ,K(x)}. (2.7)

Because of item 2 we call Gβ,K the free-energy functional of the mean-field B-C model. In the
context of Curie-Weiss-type models, the form of Gβ,K is explained on page 2247 of [15].

We next apply the Ginzburg-Landau phenomenology to Gβ,K in order to reveal the phase-
transition structure of the model. We then state two theorems showing that the predictions of
the Ginzburg-Landau phenomenology are correct. As explained in [17], the starting point is to
represent Gβ,K in the positive quadrant of the β–K plane by a polynomial consisting of the first
few terms in its Taylor expansion. The art in applying this phenomenology is to have a feel
for how many terms should be kept. The global minimum points of this polynomial, which are
easily determined, should indicate the structure of the global minimum points of Gβ,K and thus
the phase-transition structure of the model. The sets that describe the phase-transition structure
of the model are shown in Figure 1 in the introduction.

One additional aspect of the Ginzburg-Landau phenomenology is to correctly capture the
symmmetries of the order parameter. In the case of mean-field B-C model the order parameter
is the scalar magnetization m(β,K), and the only symmetry is sign change, which rules out
odd powers in the approximations (2.9) and (2.10). In more complicated models it becomes an
important challenge to construct the correct Ginzburg-Landau approximation to the free-energy
functional that captures all the symmetries.

In the mean-field B-C model Gβ,K is an even function vanishing at 0. Define K(β) =
(eβ + 2)/4β. For β > 0 and K > 0 the first three terms in the Taylor expansion of Gβ,K(x) at
0 are

G
(2)
β,K(0)

2!
x2 +

G
(4)
β,K(0)

4!
x4 +

G
(6)
β,K(0)

6!
x6, (2.8)
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where G(2)
β,K(0) = 2βK(K(β)−K)/K(β) and G(4)

β,K(0) = 2(2βK)4(4− eβ)/(eβ + 2)2. We
will comment on the sixth-order term later. The coefficient of x2 in (2.8) is positive, zero, or
negative according to whether K < K(β), K = K(β), or K > K(β). Also, the coefficient of
x4 in (2.8) is positive, zero, or negative according to whether β < log 4, β = log 4, or β > log 4.
The value log 4 defines the critical inverse temperature βc. The coefficients of x2 and x4 both
vanish when (β,K) = (βc, K(βc)) = (log 4, 3/2 log 4), which is the tricritical point.

For 0 < β < βc, the coefficient of x4 in (2.8) is positive. We represent Gβ,K by the first two
terms in its Taylor expansion, obtaining for x near 0

Gβ,K(x) ≈ βK[K(β)−K]

K(β)
x2 +

4(βK)4(4− eβ)

3(eβ + 2)2
x4.

In order to simplify the calculation, we replaceK byK(β) both in the term multiplyingK(β)−
K in the coefficient of x2 and in the coefficient of x4. After the substitution βK(β) = (eβ+2)/4,
the coefficient of x2 becomes β(K(β)−K), and the coefficient of x4 becomes c4(β) = (eβ +
2)2(4 − eβ)/3 · 43. Thus for 0 < β < βc, K near K(β), and x near 0 we have the ad hoc
approximation

Gβ,K(x) ≈ G̃β,K(x) = β(K(β)−K)x2 + c4(β)x4. (2.9)

In a different guise a polynomial having a similar form arises in (3.4) in the derivation of the
asymptotic behavior of m(βn, Kn) for appropriate sequences (βn, Kn) converging to a point
(β,K(β)) for 0 < β < βc.

We now describe the structure of the set of global minimum points of G̃β,K for fixed 0 < β <
βc and variable K. For 0 < K ≤ K(β) the coefficient of x2 in G̃β,K is nonnegative, and G̃β,K

has a unique global minimum point at 0. As K increases through the value K(β), 0 becomes
a local maximum point of G̃β,K , and G̃β,K picks up two symmetric global minimum points,
which we label ±x̄(β,K). The quantity x̄(β,K) is a positive, increasing, continuous function
for K > K(β), and as K → (K(β))+, x̄(β,K)→ 0+. Thus the set of global minimum points
of G̃β,K exhibits a continuous bifurcation at K = K(β), changing continuously from {0} for
0 < K ≤ K(β) to {±x̄(β,K)} for K > K(β). This continuous bifurcation corresponds to a
second-order phase transition. As we will see in Theorem 2.2, for 0 < β < βc the behavior of
the set of global minimum points of G̃β,K has the same qualitative behavior as the behavior of
the setMβ,K of the set of global minimum points of the free-energy functional Gβ,K ; namely, a
continuous bifurcation corresponding to a second-order phase transition asK increases through
the value K(β). For 0 < β < βc, K(β) describes the second-order curve.

The analysis for β > βc is much more complicated because of the much more intricate
phase transition structure in the neighborhood of the tricritical point. For β > βc and (β,K) in
a neighborhood of the tricritical point we represent Gβ,K by the first three terms in its Taylor
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expansion, obtaining

Gβ,K(x) ≈ βK(K(β)−K)

K(β)
x2 +

4(βK)4(4− eβ)

3(eβ + 2)2
x4 +

G
(6)
β,K(0)

6!
x6.

In order to simplify the calculation, we replace the sixth-order coefficient G(6)
β,K(0) by the

value of this derivative at the tricritical point (βc, K(βc)) = (log 4, 3/2βc). This value is
G

(6)
βc,K(βc)

(0) = 2 · 34. We also replace β and K by βc and K(βc) both in the terms multi-
plying K(β)−K in the coefficient of x2 and in the term multiplying 4− eβ in the coefficient of
x4. With these replacements the coefficient of x2 becomes βc(K(β) −K), and the coefficient
of x4 becomes 3(4− eβ)/16. Thus for β > βc, (β,K) near the tricritical point, and x near 0 we
have the ad hoc approximation

Gβ,K(x) ≈ G̃β,K(x) = βc(K(β)−K)x2 + c4(4− eβ)x4 + c6x
6, (2.10)

where c4 = 3/16 and c6 = 2 · 34/6! = 9/40. In a different guise a polynomial having a similar
form arises in (5.4) in the derivation of the asymptotic behavior of m(βn, Kn) for appropriate
sequences (βn, Kn) converging to the tricritical point.

G̃β,K is a polynomial of degree 6, the set of global minimum points of which can be analyzed
using Theorem A.1. The details of this analysis are omitted. The main point is that for β > βc
the set of global minimum points of G̃β,K exhibits a discontinuous bifurcation at a certain value
K = K̃1(β), changing discontinuously from {0} for K < K̃1(β) to {0,±x̄(β, K̃1(β))} for
K = K̃1(β) to {±x̄(β,K)} for K > K̃1(β). In these formulas x̄(β,K) is a positive quantity
defined for β > βc and K ≥ K̃1(β). This discontinuous bifurcation corresponds to a first-order
phase transition. As we will see in Theorem 2.3, for β > βc the behavior of the set of global
minimum points of G̃β,K has the same qualitative behavior as the behavior of the setMβ,K of
global minimum points of the free-energy functional Gβ,K ; namely, a discontinuous bifurcation
corresponding to a first-order phase transition as K increases through a certain value K1(β).

The next two theorems give the structure ofMβ,K first for 0 < β < βc = log 4 and then
for β > βc. These theorems make rigorous the discussion based on the structure of the set of
global minimum points of the approximating polynomials G̃β,K defined in (2.9) and (2.10). The
first theorem, proved in Theorem 3.6 in [15], describes the continuous bifurcation inMβ,K for
0 < β < βc. This bifurcation corresponds to a second-order phase transition. The quantity
K(β) is denoted by K(2)

c (β) in [15] and by Kc(β) in [11].

Theorem 2.2. For 0 < β ≤ βc, we define

K(β) = 1/[2βc′′β(0)] = (eβ + 2)/(4β). (2.11)
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For these values of β,Mβ,K has the following structure.
(a) For 0 < K ≤ K(β),Mβ,K = {0}.
(b) For K > K(β), there exists m(β,K) > 0 such thatMβ,K = {±m(β,K)}.
(c) m(β,K) is a positive, increasing, continuous function for K > K(β), and as K →

(K(β))+, m(β,K)→ 0+. Therefore,Mβ,K exhibits a continuous bifurcation at K(β).

The next theorem, proved in Theorem 3.8 in [15], describes the discontinuous bifurcation
inMβ,K for β > βc. This bifurcation corresponds to a first-order phase transition. As shown
in that theorem, for all β > βc, K1(β) < K(β). The quantity K1(β) is denoted by K(1)

c (β) in
[15] and by Kc(β) in [11].

Theorem 2.3. For β > βc,Mβ,K has the following structure in terms of the quantity K1(β),
denoted by K(1)

c (β) in [15] and defined implicitly for β > βc on page 2231 of [15].
(a) For 0 < K < K1(β),Mβ,K = {0}.
(b) ForK = K1(β) there existsm(β,K1(β)) > 0 such thatMβ,K1(β) = {0,±m(β,K1(β))}.
(c) For K > K1(β) there exists m(β,K) > 0 such thatMβ,K = {±m(β,K)}.
(d) m(β,K) is a positive, increasing, continuous function for K ≥ K1(β), and as K →

K1(β)+, m(β,K)→ m(β,K1(β)) > 0. Therefore,Mβ,K exhibits a discontinuous bifurcation
at K1(β).

We recall from (2.7) thatMβ,K can be characterized as the set of global minimum points
of Gβ,K . In Figure 3 we exhibit the graphs of Gβ,K for 0 < β ≤ βc and increasing values of
K > 0. These graphs are based on the detailed analysis of the global minimum points of a
related function in section 3.2 of [15]. The graph for 0 < K ≤ K(β) is shown in (a), and the
graph for K > K(β) is shown in (b).

(a) (b)

Figure 3: Graphs of Gβ,K for 0 < β ≤ βc. (a) 0 < K ≤ K(β), (b) K > K(β).

In Figures 4, 5, and 6, we exhibit the graphs of Gβ,K for β > βc and increasing values of
K > 0. These graphs are based on the detailed analysis of the global minimum points of a
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related function in section 3.3 of [15]. The graphs for 0 < K < K1(β) are shown in Figure 4,
the graph for K = K1(β) in Figure 5, and the graphs for K > K1(β) in Figure 6. These three
figures correspond, respectively, to parts (a), (b), and (c) of Theorem 2.3.

(a) (b)

Figure 4: Graphs of Gβ,K for β > βc. (a) 0 < K < κ(β), (b) κ(β) < K < K1(β). For β > βc the set of
minimum points of Gβ,K undergoes the bifurcation shown in graphs (a) and (b) as K increases through the value
κ(β).

Figure 5: Graph of Gβ,K for β > βc and K = K1(β).

In the next section we determine the asymptotic behavior of m(βn, Kn) for appropriate
sequences (βn, Kn) converging from the phase-coexistence region to a second-order point. In
determining the asymptotic behavior, we will see how to make rigorous the Ginzburg-Landau
phenomenology by replacing, with a well defined limit, the approximation of the free-energy
functional Gβ,K by the fourth-degree polynomial G̃β,K in (2.9).
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Figure 6: Graphs of Gβ,K for β > βc. (a) K1(β) < K < K(β), (b) K ≥ K(β).

3 Asymptotic Behavior ofm(βn,Kn) Near a Second-Order
Point

In this section we derive the asymptotic behavior of the magnetization m(βn, Kn) for two se-
quences (βn, Kn). For 0 < β < βc each of these sequences converges to a second-order point
(β,K(β)) from the phase-coexistence region located above the second-order curve. This sec-
tion is a warm-up for section 5, in which we analyze the much more complicated asymptotic
behavior of m(βn, Kn) in the neighborhood of the tricritical point.

By definition, when (βn, Kn) lies in the phase-coexistence region, m(βn, Kn) is the unique
positive, global minimum point of the free-energy functional Gβn,Kn . For each of the sequences
considered in this section the asymptotic behavior of m(βn, Kn) is expressed in terms of the
unique positive, global minimum point x̄ of the limit of a suitable scaled version of Gβn,Kn .
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This limit is a fourth degree polynomial called the Ginzburg-Landau polynomial. As we will
see, properties of this polynomial reflect the phase-transition structure of the mean-field B-C
model, thus making rigorous the predictions of the Ginzburg-Landau phenomenology of critical
phenomena mentioned in section 2.

The two sequences (βn, Kn) to be considered in this section are defined in terms of a positive
parameter α that regulates the speed of approach of (βn, Kn) to a second-order point. The
asymptotic behavior of m(βn, Kn) for each of the two sequences is given in Theorems 3.1 and
3.2. This behavior is derived from the general result in Theorem 4.2.

For 0 < β < βc let (βn, Kn) be an arbitrary positive sequence converging to a second-order
point (β,K(β)) and let γ > 0 be given. In the preceding section we motivated the phase-
transition structure for 0 < β < βc by approximating Gβ,K(x) in (2.9) by a polynomial of
degree 4 derived from the first two terms of its Taylor expansion. The starting point in deter-
mining the asymptotic behavior of m(βn, Kn) is to replace this two-term Taylor expansion for
Gβ,K(x) by the two-term Taylor expansion for nGβn,Kn(x/nγ) with an error term. According
to Taylor’s Theorem, for all n ∈ N, any R > 0, and all x ∈ R satisfying |x/nγ| < R there
exists ξn(x/nγ) ∈ [−x/nγ, x/nγ] such that

nGβn,Kn(x/nγ) (3.1)

=
1

n2γ−1

G
(2)
βn,Kn

(0)

2!
x2 +

1

n4γ−1

G
(4)
βn,Kn

(0)

4!
x4 +

1

n5γ−1

G
(5)
βn,Kn

(ξn(x/nγ))

5!
x5.

In deriving this formula, we use the fact that Gβn,Kn(0) = 0 and that since Gβn,Kn is an even
function, G(1)

βn,Kn
(0) = 0 = G

(3)
βn,Kn

(0). Because the sequence (βn, Kn) is positive and bounded,
there exists a ∈ (0,∞) such that 0 < βn ≤ a and 0 < Kn ≤ a for all n. As a continuous func-
tion of (β,K, y) on the compact set [0, a]× [0, a]× [−R,R], G(5)

β,K(y) is uniformly bounded. It
follows that the quantity G(5)

βn,Kn
(ξn(x/nγ)) appearing in the error term in the Taylor expansion

is uniformly bounded for n ∈ N and x ∈ (−Rnγ, Rnγ). We summarize this expansion by
writing

nGβn,Kn(x/nγ) =
1

n2γ−1

G
(2)
βn,Kn

(0)

2!
x2 +

1

n4γ−1

G
(4)
βn,Kn

(0)

4!
x4 + O

(
1

n5γ−1

)
x5, (3.2)

where the big-oh term is uniform for x ∈ (−Rnγ, Rnγ).
In terms of the quantity K(β) = (eβ + 2)/(4β), the coefficients G(2)

βn,Kn
(0) and G(4)

βn,Kn
(0)

in the Taylor expansion are given by

G
(2)
βn,Kn

(0) =
2βnKn(K(βn)−Kn)

K(βn)
= 2β(K(βn)−Kn) · βnKn

βK(βn)
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and

G
(4)
βn,Kn

(0) =
2(2βnKn)4(4− eβn)

(eβn + 2)2
.

In order to ease the notation, we let εn denote a sequence that converges to 0 and that represents
the various error terms arising in the following calculation; we use the same notation εn to
represent different error terms. Since (βn, Kn) converges to (β,K(β)) and the function K(·) is
continuous, we have βnKn/K(βn)→ β. Thus

G
(2)
βn,Kn

(0)/2! = β(K(βn)−Kn)(1 + εn).

Define c4(β) = (eβ + 2)2(4− eβ)/(8 · 4!). Since 2βnKn → 2βK(β) = (eβ + 2)/2, we also
have

G
(4)
βn,Kn

(0)/4! = (eβ + 2)2(4− eβ)(1 + εn)/(8 · 4!) = c4(β)(1 + εn); (3.3)

c4(β) > 0 since 4 − eβ = eβc − eβ > 0. Thus for all n ∈ N, any γ > 0, any R > 0, and all
x ∈ R satisfying |x/nγ| < R

nGβn,Kn(x/nγ) =
1

n2γ−1
β(K(βn)−Kn)(1 + εn)x2 (3.4)

+
1

n4γ−1
c4(β)(1 + εn)x4 + O

(
1

n5γ−1

)
x5,

where the big-oh term is uniform for x ∈ (−Rnγ, Rnγ).
For the moment, on the right side of the last display let us replace (βn, Kn) by (β,K), set

n = 1, and drop the big-oh term. Doing so, we obtain the polynomial G̃β,K that approximates
the free energy functional Gβ,K in (2.9) for 0 < β < βc, K near K(β), and x near 0. Arising
via the Ginzburg-Landau phenomenology, this polynomial is used in section 2 to motivate the
continuous bifurcation in the set of equilibrium values of the magnetization that is described
rigorously in Theorem 2.2. As we will soon see, by a suitable choice of (βn, Kn) and other
parameters the right side of the last display converges to a Ginzburg-Landau polynomial in
terms of which the asymptotic behavior of m(βn, Kn) is described.

We return to (3.4), in which the term (K(βn) − Kn) converges to 0 as n → ∞. The two
different asymptotic behaviors of m(βn, Kn) to be considered in this section each depends on
the choice of the sequence (βn, Kn) converging to the second-order point (β,K(β)). Each
choice controls, in a different way, the rate at which (K(βn) − Kn) → 0. We analyze two
different cases, each giving rise to a Ginzburg-Landau polynomial having a unique positive,
global minimum points at x̄ for some x̄ > 0. This quantity enters the respective asymptotic
formula for m(βn, Kn)→ 0.



Ellis, Machta, and Otto: Asymptotics for the Magnetization 24

Fix 0 < β < βc. For the first choice of sequence we take α > 0, b ∈ {1, 0,−1}, and k ∈ R
and define

βn = β + b/nα and Kn = K(β) + k/nα. (3.5)

If b 6= 0, then (βn, Kn) converges to (β,K(β)) along a ray with slope k/b (see path 1 in Figure
2). We assume that K ′(β)b− k 6= 0. Since

K(βn) = K(β + b/nα) = K(β) +K ′(β)b/nα + O(1/n2α),

we have
K(βn)−Kn = (K ′(β)b− k)/nα + O(1/n2α). (3.6)

It follows from (3.4) that for all n ∈ N, any γ > 0, any R > 0, and all x ∈ R satisfying
|x/nγ| < R

nGβn,Kn(x/nγ) (3.7)

=
1

n2γ+α−1
β(K ′(β)b− k)(1 + εn)x2

+
1

n4γ−1
c4(β)(1 + εn)x4 + O

(
1

n2γ+2α−1

)
x2 + O

(
1

n5γ−1

)
x5.

Because K ′(β)b− k 6= 0 and c4(β) > 0, the coefficients of x2 and of x4 are both nonzero.
The case where K ′(β)b− k = 0 must be handled differently. If this equality holds, then the

asymptotic expression (3.6) for (K(βn)−Kn) is indeterminate. In order to calculate the correct
asymptotic expression for (K(βn) − Kn) when K ′(β)b − k = 0, one must consider the next
term in the Taylor expansion of K(β + b/nα), obtaining (3.14) with p = 2 and ` = 0. We carry
out the asymptotic analysis for this case in Theorem 3.2.

We return to the sequence (βn, Kn) in (3.5) when K ′(βc)b − k 6= 0. In order to obtain the
limit of nGβn,Kn(x/nγ), we impose the condition that the powers of n appearing in the first two
terms in (3.7) equal 0; i.e., 2γ + α − 1 = 0 = 4γ − 1, which is equivalent to γ = 1/4 and
α = 1− 2γ = 1/2. With this choice of γ and α, the powers of n appearing in the last two terms
in (3.7) are positive, and so for all x ∈ R both terms converge to 0 as n → ∞. It follows that
for γ = 1/4 and α = 1/2, as n→∞ we have for all x ∈ R

nGβn,Kn(x/nγ)→ g(x) = β(K ′(β)b− k)x2 + c4(β)x4.

We call g the Ginzburg-Landau polynomial. Since the big-oh terms in (3.7) are uniform for
x ∈ (−Rnγ, Rnγ), the convergence of nGβn,Kn(x/nγ) to g(x) is uniform for x in compact
subsets of R.

By a simple trick, we are able to derive a similar limit that is valid for all α > 0. Let u be
a real number that will be chosen momentarily. Multiplying the numerator and denominator of
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the right side of (3.7) by nu, we obtain nGβn,Kn(x/nγ) = nuGn(x), where for all n ∈ N, any
γ > 0, any R > 0, and all x ∈ R satisfying |x/nγ| < R

Gn(x) (3.8)

=
1

n2γ+α−1+u
β(K ′(β)b− k)(1 + εn)x2

+
1

n4γ−1+u
c4(β)(1 + εn)x4 + O

(
1

n2γ+2α−1+u

)
x2 + O

(
1

n5γ−1+u

)
x5.

In this formula εn → 0 and the big-oh terms are uniform for x ∈ (−Rnγ, Rnγ). Again we
impose the condition that the powers of n appearing in the first two terms in (3.8) equal 0; i.e.,
2γ + α − 1 + u = 0 = 4γ − 1 + u. These two equalities are equivalent to γ = α/2 and
u = 1 − 4γ = 1 − 2α. With this choice of γ and u, the powers of n appearing in the last two
terms in (3.8) are positive, and so for all x ∈ R both terms converge to 0 as n→∞. It follows
that as n→∞, we have for all x ∈ R

Gn(x) = n1−uGβn,Kn(x/nγ)→ g(x) = β(K ′(β)b− k)x2 + c4(β)x4. (3.9)

Again, since the big-oh terms in (3.8) are uniform for x ∈ (−Rnγ, Rnγ), the convergence of
Gn(x) to g(x) is uniform for x in compact subsets of R.

As we will see in Theorem 4.2, by proving the convergence in (3.9) for u = 1 − 2α ∈
(−∞, 1), we obtain the asymptotic behavior of m(βn, Kn) for any α > 0. If we worked only
with u = 0, then we would obtain the asymptotic behavior of m(βn, Kn) only for α = 1/2.

The Ginzburg-Landau polynomial g has two different behaviors depending on the sign of
β(K ′(β)b−k), which is the coefficient of x2. We first consider the case where β(K ′(β)b−k) >
0. This corresponds to (βn, Kn) converging to (β,K(β)) along a ray lying beneath the tangent
line to (β,K(β)). Since K(β) is a convex function for 0 < β < βc [Lem. 6.1(c)], in this
situation (βn, Kn) converges to (β,K(β)) from the single-phase region located beneath the
second-order curve. In this case, for all n the free energy functional Gβn,Kn has a unique
global minimum point 0 [Thm. 2.2(a)], a property reflected in the fact that the Ginzburg-Landau
polynomial

g(x) = β(K ′(β)b− k)x2 + c4(β)x4

also has a unique global minimum point 0.
We now consider the case where β(K ′(β)b − k) < 0, which corresponds to (βn, Kn) con-

verging to (β,K(β)) along a ray lying above the tangent line to (β,K(β)). If b = 1, then
the slope of the ray satisfies k/b > K ′(β), which corresponds to (βn, Kn) → (β,K(β)) from
the northeast; if b = 0, then (βn, Kn) converges to (β,K(β)) from the north; and if b = −1,
then the slope of the ray satisfies k/b < K ′(β), which corresponds to (βn, Kn) converging to
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(β,K(β)) from the northwest. In each of these situations (βn, Kn) lies in the phase-coexistence
region for all sufficiently large n. For such values of n the global minimum points of the free
energy functional Gβn,Kn are ±m(βn, Kn) [Thm. 2.2(b)], a property reflected in the fact that
the global minimum points of the Ginzburg-Landau polynomial g are also a pair of symmetric
nonzero points; these points are ±x̄ for x̄ > 0 defined in (3.10).

In the next theorem we derive the asymptotic behavior of m(βn, Kn) when the sequence
(βn, Kn) defined in (3.5) converges to a second-order point (β,K(β)) from the phase-coexistence
region located above the second-order curve; equivalently, when the coefficient β(K ′(β)b− k)
of x2 in the Ginzburg-Landau polynomial g is negative. According to Theorem 4.1, in this case
m(βn, Kn) → 0. Theorem 4.2 shows that as a consequence of the uniform convergence of Gn

to g and other hypotheses, the sequence nα/2m(βn, Kn) of positive global minimum points of
Gn converges to the positive global minimum point x̄ of g. This yields the asymptotic formula
m(βn, Kn) ∼ x̄/nα/2 → 0 given in part (c) of the next theorem.

Theorem 3.1. For β ∈ (0, βc), α > 0, b ∈ {1, 0,−1}, and a real number k 6= K ′(β)b, define

βn = β + b/nα and Kn = K(β) + k/nα

as well as c4(β) = (eβ + 2)2(4 − eβ)/(8 · 4!). Then (βn, Kn) converges to the second-order
point (β,K(β)). The following conclusions hold.

(a) For any α > 0, u = 1− 2α, and γ = α/2

Gn(x) = n1−uGβn,Kn(x/nγ)→ g(x) = β(K ′(β)b− k)x2 + c4(β)x4

uniformly for x in compact subsets of R.
(b) The Ginzburg-Landau polynomial g has nonzero global minimum points if and only if

K ′(β)b− k < 0. If this inequality holds, then the global minimum points of g are ±x̄, where

x̄ = (β(k −K ′(β)b)/[2c4(β)])
1/2 (3.10)

(c) Assume that K ′(β)b − k < 0. Then for any α > 0, m(βn, Kn) → 0 and has the
asymptotic behavior

m(βn, Kn) ∼ x̄/nα/2; i.e., lim
n→∞

nα/2m(βn, Kn) = x̄.

If b 6= 0, then this becomes m(βn, Kn) ∼ x̄|β − βn|1/2.

Proof. Part (a) follows from the discussion leading up to the statement of the theorem. The first
assertion in part (b) is elementary. If K ′(β)b− k < 0, then the equation g′(x) = 2β(K ′(β)b−
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k)x + 4c4(β)x3 = 0 has solutions at ±x̄ and at 0, where x̄ is defined in (3.10). One easily
checks that ±x̄ are global minimum points and 0 a local maximum point.

We now verify the asymptotic behavior ofm(βn, Kn) in part (c). The convergencem(βn, Kn)→
0 is proved in Theorem 4.1. The asymptotic behavior m(βn, Kn) ∼ x̄/nα/2 is a consequence
of Theorem 4.2, a general result covering the present case, the sequence considered in Theorem
3.2, and the sequences (βn, Kn) converging to the tricritical point that are considered in The-
orems 5.1–5.4. We now verify the four hypotheses of that theorem for the sequence (βn, Kn)
in Theorem 3.1, which converges to the second-order point (β,K(β)). Hypothesis (i) is valid
since K ′(β)b− k < 0 is equivalent to Kn > K(βn) for all sufficiently n [see (3.6)]. Hence the
inequality K ′(β)b−k < 0 guarantees that for all sufficiently large n, (βn, Kn) lies in the phase-
coexistence region above the second-order curve. Hypothesis (ii) is valid since nα(βn−β) = b,
nα(Kn − K(β)) = k, and either b or k is nonzero. Hypothesis (iii) involves the Ginzburg-
Landau polynomial g in part (a), which is an even polynomial of degree 4 satisfying g(x)→∞
as |x| → ∞. Hypothesis (iii)(a) states that there exist α0 > 0 and θ > 0 such that for any α > 0,
if u = 1− α/α0 and γ = θα, then

lim
n→∞

n1−uGβn,Kn(x/nγ) = g(x) = β(K ′(β)b− k)x2 + c4(β)x4

uniformly for x in compact subsets of R. As verified by the calculation leading up to the limit
(3.9) and as stated in part (a) of Theorem 3.1, hypothesis (iii)(a) is valid with α0 = 1/2 and
θ = 1/2. Hypothesis (iii)(b) is satisfied since g has a unique positive, global minimum point x̄,
Hypothesis (iv), the most technical of the four, is verified in the paragraph after the next one.
Since θ = 1/2, the general result in Theorem 4.2 takes the formm(βn, Kn) ∼ x̄/nθα = x̄/nα/2.
This is the conclusion of part (c) of Theorem 3.1.

We next consider hypothesis (iv) in Theorem 4.2, which states that there exists a polynomial
H(x) satisfying H(x) → ∞ as |x| → ∞ together with the following property: for any α > 0
there exists R > 0 such that, if u = 1 − α/α0 = 1 − 2α and γ = θα = 2α, then for all
sufficiently large n ∈ N and for all x ∈ R satisfying |x/nγ| < R, n1−uGβn,Kn(x/nγ) ≥ H(x).
This hypothesis is used in the proof of the theorem to verify that the sequence nγm(βn, Kn) is
bounded, a key component in the derivation of the asymptotic behavior of m(βn, Kn).

In order to verify hypothesis (iv) in Theorem 4.2, we fix α > 0 and substitute u = 1 − 2α
and γ = α/2 in the expansion (3.8) for Gn(x) = n1−uGβn,Kn(x/nγ). It follows that for any
α > 0, any R > 0, all n ∈ N, and all x ∈ R satisfying |x/nγ| < R

n1−uGβn,Kn(x/nγ) = β(K ′(β)b− k)(1 + εn)x2

+ c4(β)(1 + εn)x4 + O(1/nα)x2 + O(1/nγ)x5

= [β(K ′(β)b− k)(1 + εn) + O(1/nα)]x2

+ [c4(β)(1 + εn) + O(x/nγ)]x4.
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Since the big-oh terms are uniform for x ∈ (−Rnγ, Rnγ), we conclude that for any α > 0 there
exists R > 0 such that for all sufficiently large n ∈ N and all x ∈ R satisfying |x/nγ| < R

n1−uGβn,Kn(x/nγ) ≥ H(x) = −2β|K ′(β)b− k|x2 + 1
2
c4(β)x4. (3.11)

Since H(x) → ∞ as |x| → ∞, hypothesis (iv) in Theorem 4.2 is satisfied. This completes the
verification that the four hypotheses of Theorem 4.2 are valid in the context of Theorem 3.1 and
so completes the proof of the latter theorem.

We now consider the second choice of the sequence (βn, Kn) converging to a second-order
point. This sequence gives a different asymptotic behavior of m(βn, Kn) → 0 from the se-
quence considered in Theorem 3.1. Let (β0, K(β0)) be a second-order point corresponding to
0 < β0 < βc. Given α > 0, b ∈ {1,−1}, an integer p ≥ 2, and ` ∈ R we define

βn = β0 + b/nα and Kn = K(β0) +

p−1∑
j=1

K(j)(β0)bj/(j!njα) + `bp/(p!npα). (3.12)

In order to simplify the analysis, we assume that ` 6= K(p)(β0). The choice ` = K(p)(β0) will
be discussed after Theorem 3.2.

Since βn − β0 = b/nα, we can write

Kn = K(β0) +

p−1∑
j=1

K(j)(β0)(βn − β0)j/j! + `(βn − β0)p/p!.

Thus (βn, Kn) converges to (β0, K(β0)) along the curve (β, K̃(β)), where for 0 < β < βc

K̃(β) = K(β0) +

p−1∑
j=1

K(j)(β0)(β − β0)j/j! + `(β − β0)p/p!. (3.13)

This curve coincides with the second-order curve to order p − 1 in powers of β − β0 in a
neighborhood of (β0, K(β0)) (see path 2 in Figure 2). Thus the two curves have the same
tangent at (β0, K(β0)).

The relationship of the sequence (βn, Kn) to the second-order curve depends on the sign
of b. We first assume that b = 1. For all sufficiently large n, ` > K(p)(βc) corresponds to
(βn, Kn) lying in the phase-coexistence region located above the second-order curve and thus
to the free energy functional Gβn,Kn having its global minimum points at ±m(βn, Kn) 6= 0. On
the other hand, for all sufficiently large n, ` < K(p)(βc) corresponds to (βn, Kn) lying in the
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single-phase region located under the second-order curve and thus to Gβn,Kn having a unique
global minimum point at 0.

When b = −1, we must take into account the parity of p. If p is even, then the situation is as
in the last paragraph. If p is odd, then the situation is reversed. As we will see, in all cases the
structure of the set of global minimum points of the associated Ginzburg-Landau polynomial
mirrors the structure of the set of global minimum points of Gβn,Kn .

In order to calculate the asymptotic behavior of m(βn, Kn) when (βn, Kn) is the sequence
in (3.12), we follow the pattern of proof of Theorem 3.1. Let α > 0 be given. The first step is
to calculate the appropriate expansion of nGβn,Kn(x/nγ) in (3.4). In order to ease the notation,
we indicate the second-order point by (β,K(β)) instead of by (β0, K(β0)). Since

K(βn) = K(β + b/nα) = K(β) +

p∑
j=1

K(j)(β)bj/(j!njα) + O(1/n(p+1)α)),

we have
K(βn)−Kn = (K(p)(β)− `)bp/(p!npα) + O(1/n(p+1)α)). (3.14)

Substituting this expression into (3.4), we see that for all n ∈ N, any γ > 0, any R > 0, and all
x ∈ R satisfying |x/nγ| < R

nGβn,Kn(x/nγ) (3.15)

=
1

n2γ+pα−1

1

p!
β(K(p)(β)− `)bp(1 + εn)x2

+
1

n4γ−1
c4(β)(1 + εn)x4 + O

(
1

n2γ+(p+1)α−1

)
x2 + O

(
1

n5γ−1

)
x5.

In this formula c4(β) = (eβ + 2)2(4 − eβ)/(8 · 4!), εn → 0, and the big-oh terms are uniform
for x ∈ (−Rnγ, Rnγ). Given u ∈ R, we multiply the numerator and denominator of the right
side of the last display by nu, obtaining nGβn,Kn(x/nγ) = nuGn(x), where for any R > 0 and
all x ∈ R satisfying |x/nγ| < R

Gn(x) (3.16)

=
1

n2γ+pα−1+u

1

p!
β(K(p)(β)− `)bp(1 + εn)x2

+
1

n4γ−1+u
c4(β)(1 + εn)x4 + O

(
1

n2γ+(p+1)α−1+u

)
x2 + O

(
1

n5γ−1+u

)
x5.

Since ` 6= K(p)(β) and c4(β) > 0, the coefficients of x2 and x4 are both nonzero.
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The next step in calculating the asymptotic behavior of m(βn, Kn) is to obtain the limit of
Gn. In order to carry this out, we impose the condition that the two powers of n appearing in
the first two terms in (3.16) equal 0; i.e., 2γ + pα − 1 + u = 0 = 4γ − 1 + u. These two
equalities are equivalent to γ = pα/2 and u = 1− 4γ = 1− 2pα. With this choice of γ and u,
the powers of n appearing in the last two terms in (3.16) are positive, and so for all x ∈ R both
terms converge to 0 as n→∞. It follows that as n→∞, we have for all x ∈ R

Gn(x) = n1−uGβn,Kn(x/nγ)→ g(x) = 1
p!
β(K(p)(β)− `)bpx2 + c4(β)x4.

Since the big-oh terms in (3.16) are uniform for x ∈ (−Rnγ, Rnγ), the convergence of Gn(x)
to g(x) is uniform for x in compact subsets of R.

The structure of the set of global minimum points of the Ginzburg-Landau polynomial g
mirrors precisely the structure of the set of global minimum points of Gβn,Kn in the region
through which (βn, Kn) passes. The structure of the set of global minimum points of Gβn,Kn is
noted in the two paragraphs after (3.13). We first assume that b = 1. The choice ` > K(p)(β)
yields a polynomial g for which the global minimum points are a symmetric nonzero pair ±x̄,
where x̄ is defined in (3.17). On the other hand, the choice ` < K(p)(β) yields a polynomial g
having a unique global minimum point at 0. When b = −1, we must take into account the parity
of p. If p is even, then the situation is the same as for b = 1. If p is odd, then the situation is
reversed. The choice ` < K(p)(β) yields a polynomial g for which the global minimum points
are the symmetric nonzero pair ±x̄, while the choice ` > K(p)(β) yields a polynomial g having
a unique global minimum point at 0.

We are now ready to state the asymptotic behavior of m(βn, Kn) for the sequence (βn, Kn)
defined in (3.12) and for the choices of ` for which the Ginzburg-Landau polynomial has a
unique positive, global minimum point x̄. The relationships between ` and K(p)(β) in parts
(b)(i) and (b)(ii) guarantee that for all sufficiently large n, (βn, Kn) lies in the phase-coexistence
region above the second-order curve.

Theorem 3.2. For β ∈ (0, βc), α > 0, b ∈ {1,−1}, an integer p ≥ 2, and a real number
` 6= K(p)(β), define

βn = β + b/nα and Kn = K(β) +

p−1∑
j=1

K(j)(β)bj/(j!njα) + `bp/(p!npα)

as well as c4(β) = (eβ + 2)2(4 − eβ)/(8 · 4!). Then (βn, Kn) converges to the second-order
point (β,K(β)). The following conclusions hold.

(a) For any α > 0, u = 1− 2pα, and γ = pα/2

Gn(x) = n1−uGβn,Kn(x/nγ)→ g(x) = 1
p!
β(K(p)(β)− `)bpx2 + c4(β)x4
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uniformly for x in compact subsets of R.
(b) The Ginzburg-Landau polynomial g has nonzero global minimum points if and only if

(K(p)(β) − `)bp < 0. If this inequality holds, then the global minimum points of g are ±x̄,
where

x̄ =
(
β(`−K(p)(β))bp/[2c4(β)p!]

)1/2
. (3.17)

(c) Assume that (K(p)(β) − `)bp < 0. Then for any α > 0, m(βn, Kn) → 0 and has the
asymptotic behavior

m(βn, Kn) ∼ x̄/npα/2 = x̄|β − βn|p/2; i.e., lim
n→∞

npα/2m(βn, Kn) = x̄.

Proof. Part (a) follows from the discussion leading up to the statement of the theorem. The
assertions in part (b) are elementary. If (K(p)(β) − `)bp < 0, then the equation g′(x) =
2β(K(p)(β)−`)bpx/p!+4c4(β)x3 = 0 has the three real solutions 0 and±x̄, where x̄ is defined
in (3.17). One easily checks that ±x̄ are global minimum points and 0 a local maximum point.

We now verify the asymptotic behavior of m(βn, Kn) in part (c). According to Theorem
4.1, m(βn, Kn) → 0. The validity of hypotheses (i) and (ii) of Theorem 4.2 follows from the
definition of the sequence (βn, Kn) and the inequality (K(p)(β) − `)bp < 0, which by (3.14)
is equivalent to Kn > K(βn) for all sufficiently large n. Thus if (K(p)(β) − `)bp < 0, then
for all sufficiently large n, (βn, Kn) lies in the phase-coexistence region above the second-order
curve. Hypothesis (iii) of Theorem 4.2 is parts (a) and (b) of the present theorem. We now
verify hypothesis (iv) of Theorem 4.2. Using (3.16) with u = 1− 2α and γ = pα/2, one easily
proves that for any α > 0 there exists R > 0 such that for all sufficiently large n ∈ N and all
x ∈ R satisfying |x/nγ| < R

Gn(x) = n1−uGβn,Kn(x/nγ) ≥ H(x) = − 2
p!
β|K(p)(β)− `|x2 + 1

2
c4(β)x4.

Since H(x)→∞ as |x| → ∞, hypothesis (iv) of Theorem 4.2 is satisfied. This completes the
verification of the four hypotheses of Theorem 4.2. We now apply the theorem to conclude that
for any α > 0, m(βn, Kn) ∼ x̄/nγ = x̄/npα/2. Part (c) of the present theorem is proved.

In order to derive the asymptotic behavior of m(βn, Kn) → 0 for the sequence (βn, Kn) in
the last theorem, we choose ` 6= K(p)(β). The choice ` = K(p)(β) corresponds to the sequence
(βn, Kn) lying on a curve that coincides with the second-order curve to order p in powers of
(β − βc). In order to analyze this case, we must know the sign of K(p+1)(β). Because we are
unable to determine this sign analytically for arbitrary β ∈ (0, βc), the discussion of this case is
omitted.

We have seen several examples in which the structure of the set of the global minimum
points of the Ginzburg-Landau polynomial mirrors the structure of the set of global minimum
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points of the free energy functional, and thus the phase-transition structure, in the region through
which the associated sequence (βn, Kn) passes. We now reverse this procedure by using the
structure of the global minimum points of the Ginzburg-Landau polynomial g in the last theo-
rem not to mirror, but to explore the phase-transition structure in the region through which the
sequence (βn, Kn) passes. If p = 2 and ` = 0, then the Ginzburg-Landau polynomial takes the
form

g(x) = 1
2
βK ′′(β)b2x2 + c4(β)x4.

According to part (c) of Lemma 6.1, K ′′(β) > 0. With this choice of parameters, g has a
unique global minimum point at 0, and the sequence (βn, Kn) converges to (β,K(β)) along the
tangent line to (β,K(β)). This suggests that for each 0 < β < βc the points on the tangent line
sufficiently close to (β,K(β)) lie in the single-phase region located beneath the second-order
curve. In turn, this suggests that for each 0 < β < βc the second-order curve lies above the
tangent line at (β,K(β)) except at the point of tangency. This feature of the second-order curve
is equivalent to the strict convexity of the function K(β) that defines this curve, a property that
can be verified directly [Lem. 6.1(c)].

This completes our analysis of the asymptotic behavior ofm(βn, Kn)→ 0 for the sequences
considered in Theorems 3.1 and 3.2. In each case the asymptotic behavior of m(βn, Kn) is ex-
pressed in terms of the unique positive, global minimum point of the Ginzburg-Landau polyno-
mial appearing in the statement of the theorem. This is a consequence of the general asymptotic
result given in Theorem 4.2, which we derive in the next section.

4 Asymptotic Behavior ofm(βn,Kn) in Terms of Ginzburg-
Landau Polynomials

Theorem 4.2 is the main result in this paper. It gives the asymptotic behavior of m(βn, Kn) for
appropriate sequences (βn, Kn) lying in the phase-coexistence region and converging either to
a second-order point or to the tricritical point. The asymptotic behavior is expressed in terms of
the unique positive, global minimum point of the associated Ginzburg-Landau polynomial. We
already illustrated the use of this theorem in the previous section, where we considered (βn, Kn)
converging to a second-order point along a ray [Thm. 3.1] and along a curve [Thm. 3.2]. The
theorem will be applied again in the next section, where we study the much more complicated
asymptotic behavior of m(βn, Kn) in the neighborhood of the tricritical point.

The phase-coexistence region is defined to be all (β,K) satisfying 0 < β ≤ βc and K >
K(β) and all (β,K) satisfying β > βc and K ≥ K1(β). Thus for 0 < β ≤ βc, the phase-
coexistence region consists of the region located above the second-order curve and above the
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tricritical point. For β > βc, the phase-coexistence region consists of the first-order curve
(β,K1(β)) and the region located above that curve. For all (β,K) in the phase-coexistence
region there exists m(β,K) > 0 such that {±m(β,K)} ⊂ Mβ,K . This is an equality for
all (β,K) in the phase-coexistence region except for β > βc and K = K1(β), in which case
Mβ,K = {0,±m(β,K)}.

The first theorem in this section shows that for any sequence (βn, Kn) converging either
to a second-order point or to the tricritical point, m(βn, Kn) → 0. For appropriate sequences
(βn, Kn) lying in the phase-coexistence region and converging either to a second-order point or
to the tricritical point, the exact asymptotic behavior ofm(βn, Kn)→ 0 is expressed in Theorem
4.2. The next theorem is an essential component in the proof of the asymptotic behavior of
m(βn, Kn) given in Theorem 4.2.

We are able to prove an extension of Theorem 4.1 valid for first-order points. Given β > βc,
let (β,K1(β)) be a point on the first-order curve. If (βn, Kn) is a positive sequence converg-
ing to (β,K1(β)) from the phase-coexistence region located above the first-order curve, then
limn→∞m(βn, Kn) = m(β,K1(β)) > 0. Because this extension of the theorem is not used in
the paper, the proof is omitted.

Theorem 4.1. Let (βn, Kn) be an arbitrary positive sequence converging either to a second-
order point (β,K(β)), 0 < β < βc, or to the tricritical point (β,K(β)) = (βc, K(βc)). Then
limn→∞m(βn, Kn) = 0.

Proof. Since Gβn,Kn is a real analytic function, Gβn,Kn(m(βn, Kn)) ≤ 0, and Gβn,Kn(x)→∞
as |x| → ∞, Gβn,Kn has a largest positive zero, which we denote by xn. We have the inequality
0 < m(βn, Kn) < xn. For any t ∈ R, cβ(t) ≤ log(4e|t|) = log 4 + |t|. Because the sequence
(βn, Kn) is bounded and remains a positive distance from the origin and the coordinate axes,
there exist numbers 0 < b1 < b2 <∞ such that b1 ≤ βn ≤ b2 and b1 ≤ Kn ≤ b2 for all n ∈ N.
Hence

Gβn,Kn(x) = βnKnx
2 − cβn(2βnKnx)

≥ βnKnx
2 − 2βnKn|x| − log 4 ≥ b2

1(|x| − 1)2 − b2
2 − log 4.

Therefore, if x∗ denotes the positive zero of the quadratic b2
1(|x| − 1)2 − b2

2 − log 4, then

0 < sup
n∈N

m(βn, Kn) ≤ sup
n∈N

xn ≤ x∗.

It follows that m(βn, Kn) is a bounded sequence. Thus given any subsequence m(βn1 , Kn1),
there exists a further subsequence m(βn2 , Kn2) and x̃ ∈ R such that m(βn2 , Kn2) → x̃ as
n2 → ∞. We complete the proof by showing that independently of the subsequence chosen,
x̃ = 0. To prove this, we use the fact that

Gβn2 ,Kn2
(m(βn2 , Kn2)) = inf

y∈R
Gβn2 ,Kn2

(y).
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Hence for any y ∈ R,Gβn2 ,Kn2
(m(βn2 , Kn2)) ≤ Gβn2 ,Kn2

(y). SinceGβn2 ,Kn2
(x)→ Gβ,K(β)(x)

uniformly for x in compact subsets of R, it follows that for all y ∈ R

Gβ,K(β)(x̃) = lim
n2→∞

Gβn2 ,Kn2
(m(βn2 , Kn2)) ≤ lim

n2→∞
Gβn2 ,Kn2

(y) = Gβ,K(β)(y).

Therefore x̃ is a minimum point of Gβ,K(β). Because (β,K(β)) is either a second-order point
or the tricritical point, x̃ must coincide with the unique positive, global minimum point of
Gβ,K(β) at 0 [Thm. 2.2(a), Thm. 2.3(a)]. We have proved that any subsequence m(βn1 , Kn1) of
m(βn, Kn) has a further subsequence m(βn2 , Kn2) such that m(βn2 , Kn2) → 0 as n2 → ∞.
The conclusion is that limn→∞m(βn, Kn) = 0, as claimed.

In sections 3 and 5 we consider six different sequences (βn, Kn) converging either to a
second-order point or to the tricritical point. The fact that each of these sequences lies in the
phase-coexistence region for all sufficiently large n is the first hypothesis of Theorem 4.2; this
property implies that m(βn, Kn) > 0 for all sufficiently large n and m(βn, Kn) → 0 [Thm.
4.1]. Under three additional hypotheses Theorem 4.2 describes the exact asymptotic behavior
of m(βn, Kn) → 0. Examples of sequences for which the hypotheses of the theorem are valid
are given in Theorems 3.1 and 3.2 for sequences converging to a second-order point and in
Theorems 5.1–5.4 for sequences converging to the tricritical point.

Theorem 4.2. Let (βn, Kn) be a positive sequence that converges either to a second-order point
(β,K(β)), 0 < β < βc, or to the tricritical point (β,K(β)) = (βc, K(βc)). We assume that
(βn, Kn) satisfies the following four hypotheses:

(i) (βn, Kn) lies in the phase-coexistence region for all sufficiently large n.

(ii) The sequence (βn, Kn) is parametrized by α > 0. This parameter regulates the speed of
approach of (βn, Kn) to the second-order point or the tricritical point in the following
sense:

b = lim
n→∞

nα(βn − β) and k = lim
n→∞

nα(Kn −K(β))

both exist, and b and k are not both zero; if b 6= 0, then b equals 1 or −1.

(iii) There exists an even polynomial g of degree 4 or 6 satisfying g(x) → ∞ as |x| → ∞
together with the following two properties; g is called the Ginzburg-Landau polynomial.

(a) ∃α0 > 0 and ∃θ > 0 such that ∀α > 0, if u = 1− α/α0 and γ = θα, then

lim
n→∞

n1−uGβn,Kn(x/nγ) = g(x)

uniformly for x in compact subsets of R.
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(b) g has a unique positive, global minimum point x̄; thus the set of global minimum
points of g equals {±x̄} or {0,±x̄}.

(iv) There exists a polynomial H satisfying H(x) → ∞ as |x| → ∞ together with the fol-
lowing property: ∀α > 0 ∃R > 0 such that, if u = 1 − α/α0 and γ = θα, then ∀n ∈ N
sufficiently large and ∀x ∈ R satisfying |x/nγ| < R, n1−uGβn,Kn(x/nγ) ≥ H(x).

Under hypotheses (i)–(iv), for any α > 0

m(βn, Kn) ∼ x̄/nθα; i.e., lim
n→∞

nθαm(βn, Kn) = x̄.

If b 6= 0, then this becomes m(βn, Kn) ∼ x̄|β − βn|θ.

Proof. Since Gβn,Kn(0) = 0 and Gβn,Kn is even, by hypotheses (iii) g is an even polynomial
of degree 4 or 6 satisfying g(0) = 0. Hence the global minimum points of g are either ±x̄
for some x̄ > 0 or 0 and ±x̄ for some x̄ > 0. The proof of the asymptotic relationship
m(βn, Kn) ∼ x̄/nθα is much easier in the case where the global minimum points of g are ±x̄
for some x̄ > 0. After a number of preliminary steps, we will prove the theorem for such
polynomials g. We will then turn to the case where the global minimum points of g are 0 and
±x̄ for some x̄ > 0.

As in hypothesis (iii)(a), let α > 0 be given and define u = 1− α/α0 and γ = θα. In order
to ease the notation, we write m̄n = nγm(βn, Kn) and Gn(x) = n1−uGβn,Kn(x/nγ). For all
sufficiently large n, since (βn, Kn) lies in the phase-coexistence region, we havem(βn, Kn) > 0
and

Gβn,Kn(m(βn, Kn)) = inf
y∈R

Gβn,Kn(y).

It follows that for all sufficiently large n

Gn(m̄n) = n1−uGβn,Kn(m(βn, Kn)) (4.1)
= inf

y∈R
[n1−uGβn,Kn(y)] = inf

y∈R
Gn(y);

i.e., Gn attains its minimum over R at m̄n > 0. This fact will be used several times in the proof.
We first prove that the sequence {m̄n, n ∈ N} is bounded. If the sequence m̄n is not

bounded, then there exists a subsequence m̄n1 of m̄n such that m̄n1 →∞ as n1 →∞. Let R be
the quantity in hypothesis (iv). Since m(βn1 , Kn1) > 0 and m(βn1 , Kn1) → 0 [Thm. 4.1], we
have 0 < m̄n1/n

γ = m(βn1 , Kn1) < R for all sufficiently large n1, and so by hypothesis (iv)

Gn1(m̄n1) ≥ H(m̄n1)→∞ as n1 →∞.
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However, this contradicts the inequality

Gn(m̄n) = inf
y∈R

Gn(y) ≤ Gn(0) = 0,

which is valid for all n. This contradiction proves that the sequence m̄n is bounded.
We now prove that m(βn, Kn) ∼ x̄/nγ = x̄/nθα in the case where the global minimum

points of g are ±x̄ for some x̄ > 0. Let m̄n1 be any subsequence of m̄n. Since the sequence
m̄n1 is bounded, there exists a further subsequence m̄n2 and x̂ ≥ 0 such that m̄n2 → x̂ as
n2 → ∞. According to (4.1), for any y ∈ R, Gn2(m̄n2) ≤ Gn2(y). Since Gn(x) → g(x)
uniformly for x in compact subsets of R, it follows that

g(x̂) = lim
n2→∞

Gn2(m̄n2) ≤ lim
n2→∞

Gn2(y) = g(y).

Hence x̂ is a nonnegative global minimum point of g. Because g has a unique nonnegative,
global minimum point x̄, which is positive, x̂ coincides with x̄. We have proved that any
subsequence m̄n1 of m̄n has a further subsequence m̄n2 such that m̄n2 → x̄ as n2 → ∞.
The conclusion is that limn→∞ m̄n = x̄, which implies that m(βn, Kn) ∼ x̄/nγ = x̄/nθα.

We now prove that m(βn, Kn) ∼ x̄/nγ = x̄/nθα in the case where the global minimum
points of g are 0 and ±x̄ for some x̄ > 0. In this case g is a polynomial of degree 6. There are
two subcases to consider: (1) there exists an infinite subsequence n1 in N such that the global
minimum points of Gn1 are ±m̄n1; (2) there exists an infinite subsequence n4 in N such that
the global minimum points of Gn4 are 0 and ±m̄n4 . Examples of sequences for which both
subcases hold are given in the second paragraph before Theorem 5.2.

In subcase 1 we will prove that any subsequence n2 of n1 has a further subsequence n3 for
which m̄n3 → x̄. This implies that m̄n1 → x̄. In subcase 2 a similar proof shows that any
subsequence n5 of n4 has a further subsequence n6 for which m̄n6 → x̄. This implies that
m̄n4 → x̄. Now let n7 be an arbitrary subsequence in N. Then n7 contains either infinitely
many elements of the subsequence n1 or infinitely many elements of the subsequence n4. In
either case n7 contains a further subsequence n8 for which m̄n8 → x̄. The conclusion is that
m̄n → x̄, which yields the desired conclusion, namely, m(βn, Kn) ∼ x̄/nγ = x̄/nθα.

We focus on subcase 1; subcase 2 is handled similarly. In order to understand the subtlety
of the proof, we return to the argument just given in the case where the global minimum points
of g are ±x̄ for some x̄ > 0. Let n1 be the subsequence in subcase 1 and let n2 be any further
subsequence. Since the sequence m̄n2 is bounded, the same argument shows that there exists
a further subsequence n3 such that m̄n3 → x̂ as n2 → ∞, where x̂ is a nonnegative global
minimum point of g. When the global minimum points of g are±x̄ for some x̄ > 0, we are able
to conclude in fact that x̂ equals x̄. However, in the present case where the global minimum
points of g are 0 and ±x̄ for some x̄ > 0, it might turn out that x̂ equals the global minimum
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point of g at 0. In this situation we would conclude that m̄n3 → 0, which is not the asymptotic
relationship that we want.

As this discussion shows, in subcase 1 it suffices to prove that there exists no subsequence
n3 of n2 for which m̄n3 → 0 as n3 → ∞. Under the assumption that there exists such a
subsequence, we will reach a contradiction of the fact that m̄n3 is the largest critical point ofGn3 .
This fact is not directly stated in [15], but it is a straightforward consequence of Lemmas 3.9
and 3.10(a) and Theorem 3.5 in that paper. From these three results it follows that when (β,K)
lies in the two-phase region, the positive global minimum point of the function Fβ,K(z) =
Gβ,K(z/2βK) is also its largest critical point. From the definition of Gn in terms of Gβn,Kn , it
then follows that m̄n is the largest critical point of Gn for all n.

Since the global minimum points of g are 0 and ±x̄ for some x̄ > 0, there exists ȳ ∈ (0, x̄)
such that g attains its maximum on the interval [0, x̄] at ȳ and attains its maximum on the interval
[−x̄, 0] at−ȳ. In addition, g(±ȳ) > 0 = g(0) = g(±x̄). The graph of g is shown in graph (a) in
Figure 7. The graph of Gn3 under the assumption that m̄n3 → 0 is shown in graph (b) in Figure
7. Referring to these graphs should help the reader follow the proof.
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Figure 7: Proof of Theorem 4.2 in subcase 1. (a) Graph of Ginzburg-Landau polynomial g having three global
minimum points, (b) graph of Gn3 showing m̄n3 → 0.

By hypothesis (iii)(a), as n3 → ∞, Gn3(z) → g(z) uniformly on compact subsets of R.
Thus for all sufficiently large n3 and each choice of sign

Gn3(±ȳ) ≥ 2g(ȳ)/3 > 0, Gn3(±x̄) ≤ g(ȳ)/3. (4.2)

By definition of subcase 1 the global minimum points of Gn3 are ±m̄n3 , and by assumption
m̄n3 → 0 as n3 → ∞. For all sufficiently large n3, the inequality Gn3(m̄n3) < Gn3(0) = 0
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and the two inequalities in (4.2) imply that there exists ȳn3 ∈ (m̄n3 , x̄) such that Gn3 attains its
maximum on the interval [m̄n3 , x̄] at ȳn3 and attains its maximum on the interval [−x̄,−m̄n3 ] at
−ȳn3 . Therefore, ȳn3 is a critical point of Gn3 greater than m̄n3 . This contradicts the fact that
m̄n3 is the largest critical point of Gn3 . The proof of subcase 1 is complete.

Subcase 2 is handled similarly. Let n4 be the subsequence in subcase 2 and let n5 be any
further subsequence. If there exists a subsequence n6 of n5 for which m̄n6 → 0 as n6 → ∞,
then for all sufficiently large n6, there exists ȳn6 ∈ (m̄n6 , x̄) such that Gn6 attains its maximum
on the interval [m̄n6 , x̄] at ȳn6 and attains its maximum on the interval [−x̄,−m̄n6 ] at −ȳn6 .
Again this contradicts the fact that m̄n6 is the largest critical point of Gn6 . This completes the
proof of the theorem.

In the next section we use Theorem 4.2 to derive the asymptotic behavior of m(βn, Kn)
for appropriate sequences (βn, Kn) converging to the tricritical point (βc, K(βc)) from various
subsets of the phase-coexistence region. A number of new phenomena arise in this case that are
not observed in the cases studied in section 3.

5 Asymptotic Behavior of m(βn,Kn) Near the Tricritical
Point

In this section we derive the asymptotic behavior of the magnetization m(βn, Kn) for appro-
priate sequences (βn, Kn) converging to the tricritical point (βc, K(βc)) from various subsets
of the phase-coexistence region. The situation is much more complicated than in section 3, in
which we studied the asymptotic behavior of m(βn, Kn) for two different sequences (βn, Kn)
converging to points (β,K(β)) on the second-order curve from the phase-coexistence region
located above that curve. For each of these sequences there is a different asymptotic behavior.

By contrast, in the present section there are four distinct asymptotic behaviors ofm(βn, Kn)
corresponding to four different choices of the sequences (βn, Kn). These are treated in Theo-
rems 5.1–5.4. In the first three cases the limiting Ginzburg-Landau polynomial has degree 6,
and in the fourth case it has degree 4. The most interesting example is treated in Theorem 5.2.
The sequence (βn, Kn) in that theorem converges to the tricritical point for βn > βc along a
curve that is tangent to the spinodal curve at the tricritical point and depends on a curvature
parameter. For those sequences that lie in the phase-coexistence region, Theorem 5.2 shows
that m(βn, Kn) ∼ x̄(βn − βc)1/2.

As in section 3, properties of the Ginzburg-Landau polynomials in these four cases reflect
the phase-transition structure of the mean-field B-C model in the region through which the as-
sociated sequence (βn, Kn) passes. This again makes rigorous the predictions of the Ginzburg-
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Landau phenomenology of critical phenomena mentioned in section 2.
Let (βn, Kn) be an arbitrary positive sequence converging to the tricritical point (βc, K(βc)) =

(log 4, 3/2 log 4) and let γ > 0 be given. In section 2 we motivated the phase-transition struc-
ture for β > βc by approximating Gβ,K(x) in (2.10) by a polynomial of degree 6 derived from
the first three terms in its Taylor expansion. The starting point in determining the asymptotic
behavior of m(βn, Kn) is to replace this three-term Taylor expansion for Gβ,K(x) by the three-
term Taylor expansion for nGβn,Kn(x/nγ) with an error term. According to Taylor’s Theorem,
for any R > 0 and all x ∈ R satisfying |x/nγ| < R there exists ξn(x/nγ) ∈ [−x/nγ, x/nγ]
such that

nGβn,Kn(x/nγ) (5.1)

=
1

n2γ−1

G
(2)
βn,Kn

(0)

2!
x2 +

1

n4γ−1

G
(4)
βn,Kn

(0)

4!
x4

+
1

n6γ−1

G
(6)
βn,Kn

(0)

6!
x6 +

1

n7γ−1

G
(7)
βn,Kn

(ξn(x/nγ))

7!
x7.

In deriving this formula, we use the fact that Gβn,Kn(0) = 0 and that since Gβn,Kn is an even
function, G(1)

βn,Kn
(0) = 0 = G

(3)
βn,Kn

(0) = G
(5)
βn,Kn

(0). Because the sequence (βn, Kn) is positive
and bounded, there exists a ∈ (0,∞) such that 0 < βn ≤ a and 0 < Kn ≤ a for all n.
As a continuous function of (β,K, y) on the compact set [0, a] × [0, a] × [−R,R], G(7)

β,K(y)

is uniformly bounded. It follows that the quantity G
(7)
βn,Kn

(ξn(x/nγ)) appearing in the error
term in the Taylor expansion is uniformly bounded for x ∈ (−Rnγ, Rnγ). We summarize this
expansion by writing

nGβn,Kn(x/nγ) =
1

n2γ−1

G
(2)
βn,Kn

(0)

2!
x2 +

1

n4γ−1

G
(4)
βn,Kn

(0)

4!
x4 (5.2)

+
1

n6γ−1

G
(6)
βn,Kn

(0)

6!
x6 + O

(
1

n7γ−1

)
x7,

where the big-oh term is uniform for x ∈ (−Rnγ, Rnγ).
In terms of the quantity K(β) = (eβ + 2)/4β, the coefficients G(2)

βn,Kn
(0) and G(4)

βn,Kn
(0) in

the Taylor expansion are given by

G
(2)
βn,Kn

(0) =
2βnKn(K(βn)−Kn)

K(βn)
= 2β(K(βn)−Kn) · βnKn

βK(βn)

and

G
(4)
βn,Kn

(0) =
2(2βnKn)4(4− eβn)

(eβn + 2)2
.
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In order to ease the notation, we let εn denote a sequence that converges to 0 and that represents
the various error terms arising in the following calculation; we use the same notation εn to
represent different error terms. Since (βn, Kn) converges to (βc, K(βc)) and the function K(·)
is continuous, we have βnKn/K(βn)→ βc. Thus

G
(2)
βn,Kn

(0)/2! = βc(K(βn)−Kn)(1 + εn).

Let c4 = 3/16. Since 2βnKn → 2βcK(βc) = (eβc + 2)/2 = 3 and eβn + 2→ eβc + 2 = 6, we
also have

G
(4)
βn,Kn

(0)/4! = 2 · 34(4− eβn)(1 + εn)/62 · 4! = c4(4− eβn)(1 + εn). (5.3)

In section 3 we have βn → β ∈ (0, βc) and thus 4− eβn = (4− eβ)(1 + εn) > 0. In the present
section, however, 4 − eβn → 0 as βn → βc, and so we must keep this term in the last display.
Finally, let c6 = 9/40. Since G(6)

βn,Kn
(0)→ G

(6)
βc,K(βc)

(0) = 2 · 34, we have

G
(6)
βn,Kn

(0)/6! = 2 · 34(1 + εn)/6! = c6(1 + εn).

Substituting these expressions into the Taylor expansion (5.2), we obtain for all n ∈ N, any
γ > 0, any R > 0, and all x ∈ R satisfying |x/nγ| < R

nGβn,Kn(x/nγ) (5.4)

=
1

n2γ−1
βc(K(βn)−Kn)(1 + εn)x2 +

1

n4γ−1
c4(4− eβn)(1 + εn)x4

+
1

n6γ−1
c6(1 + εn)x6 + O

(
1

n7γ−1

)
x7,

where c4 = 3/16 and c6 = 9/40.
For the moment, in the polynomial on the right side of the last display, let us replace

(βn, Kn) by (β,K) and set n = 1. Doing so, we obtain the polynomial G̃β,K that approxi-
mates the free energy functional Gβ,K in (2.10) for β > βc, (β,K) near the tricritical point, and
x near 0. Arising via the Ginzburg-Landau phenomenology, this polynomial is used in section
2 to motivate the discontinuous bifurcation in the set of equilibrium values of the magnetiza-
tion that is described rigorously in Theorem 2.3. As we will soon see, by suitable choices of
(βn, Kn) and other parameters the polynomial on the right side of the last display converges to a
Ginzburg-Landau polynomial in terms of which the convergence ofm(βn, Kn) to 0 is described.

We return to (5.4), in which the terms K(βn) − Kn and 4 − eβn both converge to 0 as
n→∞. This formula is the seed from which will blossom the various asymptotic behaviors of
m(βn, Kn), each depending on the choice of the sequence (βn, Kn) converging to the tricritical
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point. Each choice controls, in a different way, the rate at whichK(βn)−Kn → 0 and eβn−4→
0. We analyze four separate cases, each giving rise to a Ginzburg-Landau polynomial having a
unique positive, global minimum points at x̄ for some x̄ > 0. This quantity enters the respective
asymptotic formula for m(βn, Kn)→ 0.

For the first choice we take α > 0, b ∈ {1, 0,−1}, and k ∈ R and define

βn = βc + b/nα and Kn = K(βc) + k/nα. (5.5)

If b 6= 0, then (βn, Kn) converges to the tricritical point along a ray with slope k/b (see path 3
in Figure 2). We assume that K ′(βc)b− k 6= 0. Since

K(βn) = K(βc + b/nα) = K(βc) +K ′(βc)b/n
α + O(1/n2α),

we have
K(βn)−Kn = (K ′(βc)b− k)/nα + O(1/n2α) (5.6)

and
4− eβn = eβc(1− eb/nα) = −4b/nα + O(1/n2α). (5.7)

The case where K ′(βc)b − k = 0 must be handled differently. If this equality holds, then
the expression for K(βn) − Kn given here is indeterminate. In order to calculate the correct
behavior of K(βn)−Kn when K ′(βc)b− k = 0, one must consider the next term in the Taylor
expansion of K(βc + b/nα), obtaining (5.13) with ` = 0 = ˜̀. We carry out the analysis for this
case after Theorem 5.1.

We return to the sequence (βn, Kn) in (5.5) when K ′(βc)b − k 6= 0. Substituting (5.6) and
(5.7) into (5.4), we obtain for all n ∈ N, any γ > 0, any R > 0, and all x ∈ R satisfying
|x/nγ| < R

nGβn,Kn(x/nγ) (5.8)

=
1

n2γ+α−1
βc(K

′(βc)b− k)(1 + εn)x2 − 1

n4γ+α−1
4c4b(1 + εn)x4

+
1

n6γ−1
c6(1 + εn)x6 + O

(
1

n2γ+2α−1

)
x2

+ O
(

1

n4γ+2α−1

)
x4 + O

(
1

n7γ−1

)
x7.

Given u ∈ R, we multiply the numerator and denominator of the right side of the last display
by nu, obtaining nGβn,Kn(x/nγ) = nuGn(x), where for any R > 0 and all x ∈ R satisfying
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|x/nγ| < R

Gn(x) (5.9)

=
1

n2γ+α−1+u
βc(K

′(βc)b− k)(1 + εn)x2 − 1

n4γ+α−1+u
4c4b(1 + εn)x4

+
1

n6γ−1+u
c6(1 + εn)x6 + O

(
1

n2γ+2α−1+u

)
x2

+ O
(

1

n4γ+2α−1+u

)
x4 + O

(
1

n7γ−1+u

)
x7.

In this formula εn → 0 and the big-oh terms are uniform for x ∈ (−Rnγ, Rnγ). SinceK ′(βc)b−
k 6= 0 and c6 > 0, the coefficients of x2, x4, and x6 in the first three terms are all nonzero.

In order to obtain the limit of Gn, we impose the condition that the powers of n appearing
in the first and third terms in the last display equal 0; i.e., 2γ + α − 1 + u = 0 = 6γ − 1 + u.
These two equalities are equivalent to γ = α/4 and u = 1− 6γ = 1− 3α/2. With this choice
of γ and u, the powers of n in the second term and the last three terms in (5.9) are positive, and
so for all x ∈ R these four terms converge to 0 as n → ∞. It follows that as n → ∞, we have
for all x ∈ R

Gn(x) = n1−uGβn,Kn(x/nγ)→ g(x) = βc(K
′(β)b− k)x2 + c6x

6.

Since the big-oh terms in (5.9) are uniform for x ∈ (−Rnγ, Rnγ), the convergence of Gn(x) to
g(x) is uniform for x in compact subsets of R.

In the next theorem we derive the asymptotic behavior of m(βn, Kn) for the sequence
(βn, Kn) defined in (5.5) with K ′(βc)b − k < 0. This inequality is equivalent to (βn, Kn)
lying in the phase-coexistence region for all sufficiently large n. Derived from the general
asymptotic result in Theorem 4.2, part (c) of the next theorem expresses the asymptotic behav-
ior ofm(βn, Kn)→ 0 in terms of the unique positive, global minimum point x̄ of the associated
Ginzburg-Landau polynomial g.

Theorem 5.1. For α > 0, b ∈ {1, 0,−1}, and a real number k 6= K ′(βc)b, define

βn = βc + b/nα and Kn = K(βc) + k/nα

as well as c6 = 9/40. Then (βn, Kn) converges to the tricritical point (βc, K(βc)). The follow-
ing conclusions hold.

(a) For any α > 0, u = 1− 3α/2, and γ = α/4

Gn(x) = n1−uGβn,Kn(x/nγ)→ g(x) = βc(K
′(βc)b− k)x2 + c6x

6
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uniformly for x in compact subsets of R.
(b) The Ginzburg-Landau polynomial g has nonzero global minimum points if and only if

K ′(βc)b− k < 0. If this inequality holds, then the global minimum points of g are ±x̄, where

x̄ = (βc(k −K ′(βc)b)/[3c6])
1/4 (5.10)

(c) Assume that K ′(βc)b − k < 0. Then for any α > 0, m(βn, Kn) → 0 and has the
asymptotic behavior

m(βn, Kn) ∼ x̄/nα/4; i.e., lim
n→∞

nα/4m(βn, Kn) = x̄.

When b 6= 0, this becomes m(βn, Kn) ∼ x̄|βc − βn|1/4.

Proof. Part (a) follows from the discussion leading up to the statement of the theorem. The
first assertion in part (b) is elementary. If K ′(βc)b− k < 0, then the equation g′(x) = 6c6x

5 +
2βc(K

′(βc)b − k)x = 0 has solutions at ±x̄ and at 0, where x̄ is defined in (5.10). One easily
checks that ±x̄ are global minimum points and 0 a local maximum point.

We now verify the asymptotic behavior of m(βn, Kn) in part (c). According to Theorem
4.1, m(βn, Kn) → 0. The validity of hypotheses (i) and (ii) of Theorem 4.2 follows from the
definition of the sequences (βn, Kn) and the inequality K ′(βc)b − k < 0, which by (5.6) is
equivalent to Kn > K(βn) for all sufficiently large n. Thus if K ′(βc)b − k < 0, then for
all sufficiently large n, (βn, Kn) lies in the phase-coexistence region; (βn, Kn) is above the
spinodal curve if b = 1, above the second-order curve if b = −1, and above the tricritical point
if b = 0. Hypothesis (iii) of Theorem 4.2 is parts (a) and (b) of the present theorem. We now
verify hypothesis (iv) of Theorem 4.2. Using (5.9) with γ = α/4 and u = 1− 3α/2, one easily
proves that for any α > 0 there exists R > 0 such that for all sufficiently large n ∈ N and all
x ∈ R satisfying |x/nγ| < R

Gn(x) = n1−uGβn,Kn(x/nγ) ≥ H(x) = −2βc|K ′(βc)b− k|x2 − 8c4x
4 + 1

2
c6x

6.

Since H(x)→∞ as |x| → ∞, hypothesis (iv) of Theorem 4.2 is satisfied. The new element is
that the term −8c4|b|x4 in H(x) must be included in order to bound below the two x4-terms in
(5.8) for all n. This completes the verification of the four hypotheses of Theorem 4.2. We now
apply the theorem to conclude that for any α > 0, m(βn, Kn) ∼ x̄/nγ = x̄/nα/4. Part (c) of the
present theorem is proved.

We now consider the second choice of sequence (βn, Kn) converging to the tricritical point,
which gives a different asymptotic behavior ofm(βn, Kn)→ 0. Given α > 0, ` ∈ R, and ˜̀∈ R
we define

βn = βc + 1/nα and Kn = K(βc) +K ′(βc)/n
α + `/(2n2α) + ˜̀/(6n3α). (5.11)
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The term involving ˜̀ is needed only in the case where ` = `c in order to assure that (βn, Kn)
lies in the phase-coexistence region for all sufficiently large n; see item (ii) after (5.12). In all
other cases the inclusion of the term involving ˜̀adds no new features, and we can take ˜̀= 0.

The choice ` = ˜̀= 0 in (5.11) reduces to the sequence (βn, Kn) in (5.5) whenK ′(βc)b−k =
0 in that formula. However, as pointed out in the paragraph after (5.5), the analysis given there
is valid only when K ′(βc)b− k 6= 0.

We now consider the behavior of (βn, Kn) for various choices of ` and ˜̀. Since βn − βc =
1/nα, we can write

Kn = K(βc) +K ′(βc)(βn − βc) + `(βn − βc)2/2 + ˜̀(βn − βc)3/6.

Thus (βn, Kn) converges to the tricritical point along the curve (β, K̃(β)), where for β > βc

K̃(β) = K(βc) +K ′(βc)(β − βc) + `(β − βc)2/2 + ˜̀(β − βc)3/6.

This curve is tangent to the spinodal curve at the tricritical point and satisfies K̃ ′′(βc) = `. Thus
` > K ′′(βc) and any ˜̀ ∈ R correspond to the sequence (βn, Kn) converging to the tricritical
point from the phase-coexistence region located above the spinodal curve (see path 4a in Figure
2). The value ` = K ′′(βc) corresponds to the sequence (βn, Kn) converging to (βc, K(βc))
along a curve that coincides with the spinodal curve to order 2 in powers of β − βc in a neigh-
borhood of the tricritical point. When ` = K ′′(βc) and ˜̀ > K ′′′(βc), (βn, Kn) lies in the
phase-coexistence region above the spinodal curve for all sufficiently large n (see path 4b in
Figure 2). Since K ′′′(βc) < 0 [Lem. 6.1(d)], we can take ˜̀= 0.

The situation for ` < K ′′(βc) is considerably more complicated. The discussion is based
on three conjectured properties of the function K1(β), which for β > βc defines the first-order
curve. Since limβ→β+

c
K1(β) = K(βc), by continuity we extend the definition of K1(β) to

β = βc by defining K1(βc) = K(βc). In the next paragraph, we assume that the first three
right-hand derivatives of K1(β) exist at βc and denote them by K ′1(βc), K ′′1 (βc), and K ′′′1 (βc).

We define
`c = −1/(4βc)− 2/β2

c + 3/β3
c . (5.12)

In section 6 we use properties of the appropriate Ginzburg-Landau polynomials plus numerical
evidence to support Conjectures 1, 2, and 3, which state the following: (1) K ′1(βc) = K ′(βc)
— i.e., at βc the first-order curve and the spinodal curve have the same right-hand tangent; (2)
K ′′1 (βc) = `c < 0 < K ′′(βc); (3) K ′′′1 (βc) > 0. If these conjectures are true, then we have the
following picture:

1. Assume that ` satisfies K ′′(βc) > ` > `c and take any ˜̀ ∈ R. Then by Conjectures
1 and 2, (βn, Kn) converges to the tricritical point from the phase-coexistence region
along a curve that passes above the first-order curve and below the spinodal curve in a
neighborhood of the tricritical point (see path 4d in Figure 2).
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2. Assume that ` = `c and take any ˜̀ > K ′′′1 (βc). Then by Conjectures 1 and 2 (βn, Kn)
converges to the tricritical point along a curve that coincides with the first-order curve to
order 2 in powers of β−βc in a neighborhood of the tricritical point (see path 4c in Figure
2). By Conjecture 3, for all sufficiently large n, (βn, Kn) lies in the phase-coexistence
region above the first-order curve and below the spinodal curve. If we did not include the
term involving ˜̀ in (5.11), then by Conjecture 3 the sequence (βn, Kn) would lie in the
single-phase region below the first-order curve for all sufficiently large n.

3. Assume that ` < `c and take any ˜̀∈ R. Then by Conjectures 1 and 2 (βn, Kn) converges
to the tricritical point from the single-phase region located under the first-order curve.

The structure of the set of global minimum points of the associated Ginzburg-Landau poly-
nomials g mirrors the phase-transition structure of the region through which the corresponding
sequence (βn, Kn) passes. As we will see in items 1–3 before the statement of Theorem 5.2,
the following three cases arise: (1) for ` > `c, the global minimum points of g are ±x̄(`),
where x̄(`) > 0 is defined in (5.19); (2) for ` = `c, the global minimum points of g are 0 and
±x̄(`c) =

√
5/3; (3) for ` < `c, g has a unique global minimum point at 0. These three cases

mirror the following features of Gβn,Kn: (1) for (βn, Kn) above the first-order curve, the global
minimum points of Gβn,Kn are the symmetric nonzero pair ±m(βn, Kn); (2) for (βn, Kn) on
the first-order curve, the global minimum points of Gβn,Kn are 0 and the symmetric nonzero
pair±m(βn, Kn); (3) for (βn, Kn) below the first-order curve, Gβn,Kn has a unique global min-
imum point at 0. In addition, as pointed out in item 4 before the statement of Theorem 5.2,
the set of global minimum points of g undergoes a discontinuous bifurcation at ` = `c. This
mirrors the discontinuous bifurcation that occurs in the set of global minimum points of Gβ,K

at K = K1(β) for β > βc [Thm. 2.3(d)].
In order to verify these properties of the Ginzburg-Landau polynomials, we must calculate

the relevant expansion of nGβn,Kn(x/nγ) in (5.4). We first consider the case where ` 6= K ′′(βc);
the case where ` = K ′′(βc) will be discussed later. Since

K(βn) = K(βc + 1/nα)

= K(βc) +K ′(βc)/n
α +K ′′(βc)/(2n

2α) +K ′′′(βc)/(6n
3α) + O(1/n4α),

we have

K(βn)−Kn = (K ′′(βc)− `)/(2n2α) + (K ′′′(βc)− ˜̀)/(6n3α) + O(1/n4α) (5.13)

and
4− eβn = 4(1− e1/nα) = −4/nα + O(1/n2α).
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Substituting the last two formulas into (5.4), we see that for all n ∈ N, any γ > 0, any R > 0,
and all x ∈ R satisfying |x/nγ| < R

nGβn,Kn(x/nγ) (5.14)

=
1

n2γ+2α−1

1

2
βc(K

′′(βc)− `)(1 + εn)x2 − 1

n4γ+α−1
4c4(1 + εn)x4

+
1

n6γ−1
c6(1 + εn)x6 + O

(
1

n2γ+3α−1

)
x2 + O

(
1

n2γ+4α−1

)
x2

+ O
(

1

n4γ+2α−1

)
x4 + O

(
1

n7γ−1

)
x7,

where c4 = 3/16 and c6 = 9/40. Given u ∈ R, we multiply the numerator and denominator
of the right side of the last display by nu, obtaining nGβn,Kn(x/nγ) = nuGn(x), where for all
n ∈ N, any γ > 0, any R > 0, and all x ∈ R satisfying |x/nγ| < R

Gn(x) (5.15)

=
1

n2γ+2α−1+u

1

2
βc(K

′′(βc)− `)(1 + εn)x2 − 1

n4γ+α−1+u
4c4(1 + εn)x4

+
1

n6γ−1+u
c6(1 + εn)x6 + O

(
1

n2γ+3α−1+u

)
x2 + O

(
1

n2γ+4α−1+u

)
x2

+ O
(

1

n4γ+2α−1+u

)
x4 + O

(
1

n7γ−1+u

)
x7.

In this formula εn → 0 and the big-oh terms are uniform for x ∈ (−Rnγ, Rnγ). Since ` 6=
K ′′(βc), c4 > 0, and c6 > 0, the coefficients of x2, x4, and x6 in the first three terms are all
nonzero.

In order to obtain the limit of Gn, we impose the condition that the powers of n appearing
in the first three terms in the last display equal 0; i.e., 2γ+ 2α− 1 +u = 0 = 4γ+α− 1 +u =
6γ − 1 + u. These three equalities are equivalent to γ = α/2 and u = 1− 6γ = 1− 3α. With
this choice of γ and u, the powers of n in the last four terms in (5.15) are positive, and so for
all x ∈ R these four terms converge to 0 as n→∞. It follows that as n→∞, we have for all
x ∈ R

Gn(x) = n1−uGβn,Kn(x/nγ)→ g`(x) = 1
2
βc(K

′′(βc)− `)x2 − 4c4x
4 + c6x

6. (5.16)

Because the big-oh terms in (5.15) are uniform for x ∈ (−Rnγ, Rnγ), the convergence ofGn(x)
to g(x) is uniform for x in compact subsets of R. Since ` 6= K ′′(βc), the three coefficients in
g` are all nonzero. We write the Ginzburg-Landau polynomial as g` in order to emphasize the
dependence on the parameter `; g` does not depend on the choice of ˜̀ in (5.11).
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We now briefly consider the case where ` = K ′′(βc). In this situation we have the right side
of (5.13) with ` = K ′′(βc). We omit the rest of the calculation showing that when ` = K ′′(βc),
the limit of Gn(x) = n1−uGβn,Kn(x/nγ) equals the same Ginzburg-Landau polynomial g`.

The Ginzburg-Landau polynomial g` has the form a2x
2 − a4x

4 + a6x
6, where

a2 = βc(K
′′(βc)− `)/2, a4 = 4c4 = 3/4 > 0, and a6 = c6 = 9/40 > 0; (5.17)

depending on the value of `, a2 can be positive, 0, or negative. We are interested in the structure
of the set of global minimum points of g` for variable `. In order to analyze this structure, we
define the critical value ac = a2

4/4a6. According to Theorem A.1, if a2 < ac, then the global
minimum points of a2x

2 − a4x
4 + a6x

6 are ±x̄(a2), where x̄(a2) > 0 is defined in (A.1); if
a2 = ac, then the global minimum points of this polynomial are 0 and ±(2a2/a4)1/2; and if
a2 > ac, then the unique global minimum point of this polynomial is 0. Substituting the values
of a2, a4, and a6, we see that ac = 5/8. Defining `c to be the value of ` for which a2 = ac, we
find that

`c = K ′′(βc)− 5/(4βc) = −1/(4βc)− 2/β2
c + 3/β3

c = −0.094979. (5.18)

The second equality follows from the formula for K ′′(βc) given in part (d) of Lemma 6.1. The
structure of the set of global minimum points of the polynomial a2x

2−a4x
4+a6x

6 translates into
the following structure of the set of global minimum points of the Ginzburg-Landau polynomial

g`(x) = 1
2
βc(K

′′(βc)− `)x2 − 4c4x
4 + c6x

6.

The formula for x̄(`) in (5.19) is obtained by substituting a2, a4, and a6 from (5.17) into the
definition (A.1) of x̄(a2).

1. For ` > `c, which corresponds to a2 < ac, the global minimum points of g` are ±x̄(`),
where

x̄(`) =
√

10
3

(
1 +

(
1− 3βc

5
(K ′′(βc)− `)

)1/2
)1/2

. (5.19)

The polynomial g` has the same shape as Gβ,K in Figure 6 in section 2.

2. For ` = `c, which corresponds to a2 = ac, the global minimum points of g` are 0 and
±x̄(`c), where x̄(`c) =

√
5/3. The polynomial g` has the same shape as Gβ,K in Figure

5 in section 2.

3. For ` < `c, which corresponds to a2 > ac, g` has a unique global minimum point at 0.
The polynomial g` has the same shape as Gβ,K in Figure 4 in section 2.

4. The set of global minimum points of g` undergoes a discontinuous bifurcation at ` = `c,
changing discontinuously from {0} for ` < `c to {0,±x̄(`c)} for ` = `c to {±x̄(`)} for
` > `c. This mirrors an analogous property of Gβ,K given in part (d) of Theorem 2.3.
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Assuming Conjectures 1–3 in section 6, we contrast properties of the sequence (βn, Kn) for
` = `c and ˜̀> K ′′′1 (βc) with properties of another sequence having the same Ginzburg-Landau
polynomial but a different structure of the set of global minimum points of Gβn,Kn . For the
first sequence, since (βn, Kn) lies in the phase-coexistence region above the first-order curve
for all sufficiently large n, the global minimum points of Gβn,Kn are the symmetric nonzero
pair ±m(βn, Kn), and as we have just pointed out, the global minimum points of g`c are 0 and
±x̄(`c). This is to be contrasted with the sequence βn = βc + 1/nα, Kn = K1(βn). Since
this sequence lies on the first-order curve for all n, the global minimum points of Gβn,Kn are
0 and ±m(βn, Kn). If one replaces K1(βn) by the first three terms in its Taylor expansion
plus an error term and uses Conjectures 1 and 2 in section 6, then one sees that the associated
Ginzburg-Landau polynomial coincides with g`c .

For the sequence (βn, Kn) defined in (5.11) the asymptotic behavior of m(βn, Kn) is given
in the next theorem. As we verify in the discussion after (5.11), (βn, Kn) lies in the phase-
coexistence region for all sufficiently large n under the following conditions on the parameters
` and ˜̀; in the last two cases these conditions are supplemented by the appropriate conjectures
in section 6:

(i) ` > K ′′(βc) and ˜̀∈ R,

(ii) ` = K ′′(βc) and ˜̀> K ′′′(βc),

(iii) K ′′(βc) > ` > `c, ˜̀∈ R, and Conjectures 1 and 2,

(iv) ` = `c, ˜̀> K ′′′1 (βc), and Conjectures 1–3.

Theorem 5.2. For α > 0, ` ∈ R, and ˜̀∈ R, define

βn = βc + 1/nα and Kn = K(βc) +K ′(βc)/n
α + `/(2n2α) + ˜̀/(6n3α)

as well as c4 = 3/16 and c6 = 9/40. Then (βn, Kn) converges to the tricritical point (βc, K(βc)).
The following conclusions hold.

(a) For any α > 0, u = 1− 3α, and γ = α/2

Gn(x) = n1−uGβn,Kn(x/nγ)→ g`(x) = 1
2
βc(K

′′(βc)− `)x2 − 4c4x
4 + c6x

6

uniformly for x in compact subsets of R.
(b) The Ginzburg-Landau polynomial g` has nonzero global minimum points if and only if

` ≥ `c = (−β2
c − 8βc + 12)/4β3

c .
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(i) Assume that ` > `c. Then the global minimum points of g` are ±x̄(`), where x̄(`) is
defined in (5.19).

(ii) Assume that ` = `c. Then the global minimum points of the Ginzburg-Landau
polynomial g`(x) are 0 and ±x̄(`c), where x̄(`c) = (5/3)1/2.

(c) In each of the cases (i)–(iv) appearing before the statement of the theorem and for any
α > 0, m(βn, Kn)→ 0 and has the asymptotic behavior

m(βn, Kn) ∼ x̄(`)/nα/2 = x̄(`)(βn − βc)1/2; i.e., lim
n→∞

nα/2m(βn, Kn) = x̄(`).

Proof. Part (a) follows from the discussion leading up to the statement of the theorem. Parts
(b), (b)(i), and (b)(ii) are consequences of Theorem A.1.

We now verify the asymptotic behavior of m(βn, Kn) in part (c). According to Theorem
4.1, m(βn, Kn) → 0. The validity of hypotheses (i) and (ii) of Theorem 4.2 follows from the
definition of the sequence (βn, Kn) and the discussion leading up to the statement of the present
theorem. Hypothesis (iii) of Theorem 4.2 is parts (a) and (b) of the present theorem. We now
verify hypothesis (iv), first in the case where ` 6= K ′′(βc). Using (5.15) with γ = α/2 and
u = 1−3α, one easily proves that for any α > 0 there exists R > 0 such that for all sufficiently
large n ∈ N and all x ∈ R satisfying |x/nγ| < R

Gn(x) = n1−uGβn,Kn(x/nγ) ≥ H(x) = −βc|K ′′(βc)− `|x2 − 8c4x
4 + 1

2
c6x

6.

Since H(x) → ∞ as |x| → ∞, hypothesis (iv) of Theorem 4.2 is satisfied when ` 6= K ′′(βc).
When ` = K ′′(βc), we obtain the lower bound in the last display by replacing H there by

H(x) = −1
3
βc|K ′′′(βc)− ˜̀|x2 − 8c4x

4 + 1
2
c6x

6,

where K ′′′(βc) = −1.024398 < 0 [Lem. 6.1(d)]. This follows from the expansion replac-
ing (5.15) when ` = K ′′(βc); the proof is omitted. The verification of the four hypotheses
of Theorem 4.2 is complete. We now apply the theorem to conclude that for any α > 0,
m(βn, Kn) ∼ x̄/nγ = x̄/nα/2. Part (c) of the present theorem is proved.

We now consider the third choice of sequence (βn, Kn) converging to the tricritical point,
which gives yet a different asymptotic behavior of m(βn, Kn) → 0. Given α > 0, an integer
p ≥ 2, and ` ∈ R, we define

βn = βc − 1/nα and Kn = K(βc) +

p−1∑
j=1

K(j)(βc)(−1)j/(j!njα) + `(−1)p/(p!npα). (5.20)

In order to simplify the analysis here, we assume that ` 6= K(p)(βc). The choice ` = K(p)(βc)
will be discussed in the third paragraph before Theorem 5.3 and after Theorem 5.4.
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The sequence (βn, Kn) defined in (5.20) converges to the tricritical point (βc, K(βc)). Since
βn − βc = −1/nα, the convergence takes place along the curve

K̃p(β) = K(βc) +

p−1∑
j=1

K(j)(βc)(β − βc)j/j! + `(β − βc)p/p!.

This curve coincides with the second-order curve to order p − 1 in powers of β − βc in a
neighborhood of the tricritical point and satisfies K̃(p)

p (βc) = ` (see paths 5 and 6 in Figure 2).
The relationship of the sequence (βn, Kn) to the second-order curve depends on the parity of p.
We first assume that p is even. For all sufficiently large n, ` > K(p)(βc) corresponds to (βn, Kn)
lying in the phase-coexistence region located above the second-order curve for β < βc and thus
to the free energy functional Gβn,Kn having its global minimum points at ±m(βn, Kn) 6= 0. On
the other hand, for all sufficiently large n, ` < K(p)(βc) corresponds to (βn, Kn) lying in the
single-phase region under the second-order curve and thus to Gβn,Kn having a unique global
minimum point at 0. If p is odd, then the situation is reversed. As one can check, in all cases
the structure of the set of global minimum points of the Ginzburg-Landau polynomial mirrors
the structure of the set of global minimum points of Gβn,Kn .

We now determine the relevant expansion of nGβn,Kn(x/nγ) in (5.4) where (βn, Kn) is the
sequence in (5.20). Since

K(βn) = K(βc + b/nα) = K(βc) +

p∑
j=1

K(j)(βc)(−1)j/(j!njα) + O(1/n(p+1)α),

we have
K(βn)−Kn = (K(p)(βc)− `)(−1)p/(p!npα) + O(1/n(p+1)α) (5.21)

and
4− eβn = 4(1− e−1/nα) = 4/nα + O(1/n2α).

Substituting the last two expressions into (5.4), we see that for all n ∈ N, any γ > 0, anyR > 0,
and all x ∈ R satisfying |x/nγ| < R

nGβn,Kn(x/nγ) (5.22)

=
1

n2γ+pα−1

1

p!
βc(K

(p)(βc)− `)(−1)p(1 + εn)x2

+
1

n4γ+α−1
4c4(1 + εn)x4 +

1

n6γ−1
c6(1 + εn)x6

+ O
(

1

n2γ+(p+1)α−1

)
x2 + O

(
1

n4γ+2α−1

)
x4 + O

(
1

n7γ−1

)
x7,
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where c4 = 3/16 and c6 = 9/40. Given u ∈ R, we multiply the numerator and denominator
of the right side of the last display by nu, obtaining nGβn,Kn(x/nγ) = nuGn(x), where for all
n ∈ N, any γ > 0, any R > 0, and all x ∈ R satisfying |x/nγ| < R

Gn(x) (5.23)

=
1

n2γ+pα−1+u

1

p!
βc(K

(p)(βc)− `)(−1)p(1 + εn)x2

+
1

n4γ+α−1+u
4c4(1 + εn)x4 +

1

n6γ−1+u
c6(1 + εn)x6

+ O
(

1

n2γ+(p+1)α−1+u

)
x2 + O

(
1

n4γ+2α−1+u

)
x4 + O

(
1

n7γ−1+u

)
x7.

In this formula εn → 0 and the big-oh terms are uniform for x ∈ (−Rnγ, Rnγ). Since ` 6=
K(p)(βc), b < 0, c4 > 0, and c6 > 0, the coefficients of x2, x4, and x6 in the first three terms are
all nonzero.

We first consider p = 2, which gives rise to a different asymptotic behavior ofm(βn, Kn)→
0 from p ≥ 3. We continue to assume that ` 6= K

′′
(βc). In order to obtain the limit of Gn, we

fix α > 0 and impose the condition that the three powers of n appearing in the first three terms
in (5.23) equal 0; i.e., 2γ + 2α − 1 + u = 0 = 4γ + α − 1 + u = 6γ − 1 + u. These three
equalities are equivalent to γ = α/2 and u = 1− 6γ = 1− 3α. With this choice of γ and u, the
powers of n in the last three terms in (5.23) are positive, and so for all x ∈ R these three terms
converge to 0 as n→∞. It follows that as n→∞, we have for all x ∈ R

Gn(x) = n1−uGβn,Kn(x/nγ)→ g(x) = 1
2
βc(K

′′(βc)− `)x2 + 4c4x
4 + c6x

6. (5.24)

Since the big-oh terms in (5.23) are uniform for x ∈ (−Rnγ, Rnγ), the convergence of Gn to g
is uniform for x in compact subsets of R.

We now briefly consider the case where ` = K ′′(βc). In this situation the right side of (5.21)
must be replaced by−K ′′′(βc)/(6n3α)+O(1/n4α). We omit the rest of the calculation showing
that when ` = K ′′(βc), the limit of Gn(x) = n1−uGβn,Kn(x/nγ) equals the same Ginzburg-
Landau polynomial g in (5.24). When ` = K ′′(βc), the coefficient of x2 equals 0, and thus g has
a unique global minimum point at 0, an uninteresting case from the viewpoint of the asymptotic
behavior of m(βn, Kn).

A major difference between the present situation and that considered in Theorem 5.2 arises
in the condition guaranteeing that the Ginzburg-Landau polynomial g in (5.24) has nonzero
global minimum points. It follows from Theorem A.2 that since the coefficient of x4 is positive,
g has nonzero global minimum points if and only if the coefficient of x2 is negative; i.e., if and
only if ` > K ′′(βc). If ` ≤ K ′′(βc), then g has a unique global minimum point at 0, again an
uninteresting case from the viewpoint of the asymptotic behavior of m(βn, Kn).
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For the sequence (βn, Kn) defined in (5.20) with p = 2 and ` > K ′′(βc), the next theorem
describes the asymptotic behavior ofm(βn, Kn). The inequality ` > K ′′(βc) in parts (b) and (c)
guarantees that for all sufficiently large n, (βn, Kn) lies in the phase-coexistence region above
the second-order curve.

Theorem 5.3. For α > 0 and ` ∈ R define

βn = βc − 1/nα and Kn = K(βc) +K ′(βc)/n
α + `/2n2α

as well as c4 = 3/16 and c6 = 9/40. Then the sequence (βn, Kn) converges to the tricritical
point (βc, K(βc)). The following conclusions hold.

(a) For any α > 0, u = 1− 3α. and γ = α/2

Gn(x) = n1−uGβn,Kn(x/nγ)→ g(x) = 1
2
βc(K

′′(βc)− `)x2 + 4c4x
4 + c6x

6

uniformly for x in compact subsets of R.
(b) The Ginzburg-Landau polynomial g has nonzero global minimum points if and only if

` > K ′′(βc). If this inequality holds, then the global minimum points of g are ±x̄, where

x̄ =
√

10
3

(
−1 +

(
1 + 3βc

5
(`−K ′′(βc))

)1/2
)1/2

. (5.25)

(c) Assume that ` > K ′′(βc). Then for any α > 0, m(βn, Kn) → 0 and has the asymptotic
behavior

m(βn, Kn) ∼ x̄/nα/2 = x̄(βc − βn)1/2; i.e., lim
n→∞

nα/2m(βn, Kn) = x̄.

Proof. Part (a) follows from the discussion leading up to the statement of the theorem. The
first assertion in part (b) is a consequence of Theorem A.2. The formula for x̄ comes from the
formula for x̄(a2) in (A.2) by substituting a2 = 1

2
βc(K

′′(βc)− `), a4 = 4c4, and a6 = c6.
We now verify the asymptotic behavior of m(βn, Kn) in part (c). According to Theorem

4.1, m(βn, Kn) → 0. The validity of hypotheses (i) and (ii) of Theorem 4.2 follows from
the definition of the sequences (βn, Kn) and the inequality ` > K ′′(βc), which by (5.21) is
equivalent to Kn > K(βn) for all sufficiently large n. Thus, if ` > K ′′(βc), then (βn, Kn) lies
in the phase-coexistence region for all sufficiently large n. Hypothesis (iii) of Theorem 4.2 is
parts (a) and (b) of the present theorem. We now verify hypothesis (iv) of Theorem 4.2. Using
(5.23) with γ = α/2 and u = 1 − 3α, one easily proves that for any α > 0 there exists R > 0
such that for all sufficiently large n ∈ N and all x ∈ R satisfying |x/nγ| < R

Gn(x) = n1−uGβn,Kn(x/nγ) ≥ H(x) = −βc|K ′′(βc)− `|x2 + 1
2
c6x

6.
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Since H(x) → ∞ as |x| → ∞, hypothesis (iv) in Theorem 4.2 is satisfied. This completes the
verification of the four hypotheses of Theorem 4.2. We now apply the theorem to conclude that
for any α > 0, m(βn, Kn) ∼ x̄/nγ = x̄/nα/2. Part (c) of the present theorem is proved.

This theorem completes the analysis for p = 2. We now continue with the analysis for the
sequences (βn, Kn) defined in (5.20) for p ≥ 3, α > 0, and ` 6= K(p)(βc). As we saw in the
discussion leading up to Theorem 5.3, for all n ∈ N, any γ > 0, anyR > 0, all x ∈ R satisfying
|x/nγ| < R, we have nGβn,Kn(x/nγ) = nuGn(x), where Gn is given by the expansion (5.23):

Gn(x) (5.26)

=
1

n2γ+pα−1+u
1
p!
βc(K

(p)(βc)− `)(−1)p(1 + εn)x2

+
1

n4γ+α−1+u
4c4(1 + εn)x4 +

1

n6γ−1+u
c6(1 + εn)x6

+ O
(

1

n2γ+(p+1)α−1+u

)
x2 + O

(
1

n4γ+2α−1+u

)
x4 + O

(
1

n7γ−1+u

)
x7.

In this formula εn → 0 and the big-oh terms are uniform for x ∈ (−Rnγ, Rnγ).
The analysis for p ≥ 3 is considerably more complicated than in the case p = 2 just

considered. In order to obtain the limit of Gn, it is useful to denote by f(γ, α, u), g(γ, α, u),
and h(γ, α, u) the respective exponents of n in the coefficients of x2, x4, and x6 in the first three
terms in the last display. Thus, f(γ, α, u) = 2γ + pα − 1 + u, g(γ, α, u) = 4γ + α − 1 + u,
and h(γ, α, u) = 6γ − 1 + u. In order to obtain a limiting Ginzburg-Landau polynomial g
having nonzero global minimum points, g must have either three terms or two terms. The
polynomial g has three terms if and only if there exist γ, α, and u for which the three equalities
f(γ, α, u) = 0 = g(γ, α, u) = h(γ, α, u) are compatible. However, a short calculation shows
that the three equalities are incompatible. The polynomial g has two terms if and only if there
exist γ, α, and u for which at least one of the following sets of two equalities and one inequality
are compatible:

1. f(γ, α, u) = 0 = g(γ, α, u) < h(γ, α, u),

2. g(γ, α, u) = 0 = h(γ, α, u) < f(γ, α, u),

3. f(γ, α, u) = 0 = h(γ, α, u) < g(γ, α, u).

Another short calculation shows the two equalities and the one inequality in item 3 are
incompatible. By contrast, the two equalities and the one inequality in item 2 are compatible.
In fact, g(γ, α, u) = 0 = h(γ, α, u) when γ = α/2 and u = 1− 6γ = 1− 3α, and g(γ, α, u) <
f(γ, α, u) when γ < (p− 1)α/2; the latter inequality is compatible with γ = α/2 since p ≥ 3.
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With this choice of γ and u, the powers of n in the first term and in the last three terms in (5.26)
are positive, and so for all x ∈ R these four terms converge to 0 as n → ∞. It follows that as
n→∞, we have for all x ∈ R

Gn(x) = n1−uGβn,Kn(x/nγ)→ g(x) = 4c4x
4 + c6x

6.

The polynomial g has a unique global minimum point at 0, an uninteresting case from the
viewpoint of the asymptotic behavior of m(βn, Kn).

The final case to consider is the compatibility of the two equalities and the one inequality
in item 1. In fact, f(γ, α, u) = 0 = g(γ, α, u) when γ = (p − 1)α/2 and u = 1 − pα − 2γ =
1− (2p− 1)α. On the other hand, g(γ, α, u) < h(γ, α, u) when γ > α/2, which is compatible
with γ = (p− 1)α/2 since p ≥ 3. With this choice of γ and u, the powers of n in the last four
terms in (5.26) are positive, and so for all x ∈ R these four terms converge to 0 as n → ∞. It
follows that as n→∞, we have for all x ∈ R

Gn(x) = n1−uGβn,Kn(x/nγ)→ g(x) = 1
p!
βc(K

(p)(βc)− `)(−1)px2 + 4c4x
4. (5.27)

Since the big-oh terms in (5.26) are uniform for x ∈ (−Rnγ, Rnγ), the convergence ofGn(x) to
g(x) is uniform for x in compact subsets of R. The Ginzburg-Landau polynomial g has nonzero
global minimum points if and only if (K(p)(βc)− `)(−1)p < 0.

For the sequence (βn, Kn) defined in (5.20) with p ≥ 3 a positive integer and (K(p)(βc) −
`)(−1)p < 0, the asymptotic behavior of m(βn, Kn) is given in the next theorem. This in-
equality involving ` and K(p)(βc) guarantees that for all sufficiently large n, (βn, Kn) lies in the
phase-coexistence region above the second-order curve.

Theorem 5.4. For p a positive integer satisfying p ≥ 3, α > 0, and a real number ` 6= K(p)(βc),
define

βn = βc − 1/nα and Kn = K(βc) +

p−1∑
j=1

K(j)(βc)(−1)j/(j!njα) + `(−1)p/(p!npα)

as well as c4 = 3/16. Then (βn, Kn) converges to the tricritical point (βc, K(βc)). The follow-
ing conclusions hold.

(a) For any α > 0, u = 1− (2p− 1)α, and γ = (p− 1)α/2

Gn(x) = n1−uGβn,Kn(x/nγ)→ g(x) = 1
p!
βc(K

(p)(βc)− `)(−1)px2 + 4c4x
4

uniformly for x in compact subsets of R.
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(b) The Ginzburg-Landau polynomial has nonzero global minimum points if and only if
(K(p)(βc)− `)(−1)p < 0. If this inequality holds, then the global minimum points of g are ±x̄,
where

x̄ =
(
βc
(
`−K(p)(βc)(−1)p

)
/[8c4p!]

)1/2
. (5.28)

(c) Assume that (K(p)(βc)− `)(−1)p < 0. Then for any α > 0, m(βn, Kn)→ 0 and has the
asymptotic behavior

m(βn, Kn) ∼ x̄/n(p−1)α/2 = x̄(βn − βc)(p−1)/2; i.e., lim
n→∞

n(p−1)α/2m(βn, Kn) = x̄.

Proof. Part (a) follows from the discussion leading up to the statement of the theorem. The first
assertion in part (b) is elementary. If (K(p)(βc) − `)(−1)p < 0, then g′(x) = 2βc(K

(p)(βc) −
`)(−1)px/p! + 16c4x

3 = 0 has solutions ±x̄ and 0, where x̄ is defined in (5.28). One easily
checks that ±x̄ are global minimum points and 0 a local maximum point.

We now verify the asymptotic behavior of m(βn, Kn) in part (c). According to Theorem
4.1, m(βn, Kn) → 0. The validity of hypotheses (i) and (ii) of Theorem 4.2 follows from
the definition of the sequences (βn, Kn) and the inequality (K(p)(βc)− `)(−1)p < 0, which by
(5.21) is equivalent toKn > K(βn) for all sufficiently large n. Thus if (K(p)(βc)−`)(−1)p < 0,
then for all sufficiently large n, (βn, Kn) lies in the phase-coexistence region above the second-
order curve. Hypothesis (iii) of Theorem 4.2 is parts (a) and (b) of the present theorem. The
verification of hypothesis (iv) of Theorem 4.2 is more subtle than in the previous theorems. The
limiting Ginzburg-Landau polynomial is of degree 4, not of degree 6, because for all x ∈ R the
x6-term in (5.26) converges to 0 as n → ∞. It is much more efficient to recalculate this limit
by using the formula (3.2) based on the two-term Taylor expansion for nGβn,Kn(x/nγ), rather
than the formula (5.1) based on the three-term Taylor expansion for nGβn,Kn(x/nγ). Inserting
the expressions for K(βn)−Kn and for 4− eβn , we obtain in place of (5.26) the expansion

Gn(x)

=
1

n2γ+pα−1+u

1

p!
βc(K

(p)(βc)− `)(−1)p(1 + εn)x2

+
1

n4γ+α−1+u
4c4(1 + εn)x4 + O

(
1

n2γ+(p+1)α−1+u

)
x2

+O
(

1

n4γ+2α−1+u

)
x4 + O

(
1

n5γ−1+u

)
x5.

Given α > 0 and choosing γ = (p− 1)α/2 and u = 1− (2p− 1)α, for all x ∈ R we obtain the
same n → ∞ limit as in (5.27). Using the last display with these values of γ and u, one easily
proves that for any α > 0 there exists R > 0 such that for all sufficiently large n ∈ N and all
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x ∈ R satisfying |x/nγ| < R

Gn(x) = n1−uGβn,Kn(x/nγ) ≥ H(x) = −2 1
p!
βc|K(p)(βc)− `|x2 + 2c4x

4.

Since H(x)→∞ as |x| → ∞, hypothesis (iv) of Theorem 4.2 is satisfied. This completes the
verification of the four hypotheses of that theorem. We now apply the theorem to conclude that
for any α > 0, m(βn, Kn) ∼ x̄/nγ = x̄/n(p−1)α/2. Part (c) of the present theorem is proved.

In order to derive the asymptotic behavior of m(βn, Kn) → 0 for the sequence (βn, Kn)
in the last theorem, we choose ` 6= K(p)(βc). The choice ` = K(p)(βc) corresponds to the
sequence (βn, Kn) lying on a curve that coincides with the second-order curve to order p in
powers of β − βc. In order to analyze this case, we must know the sign of K(p+1)(βc). Because
we are unable to determine this sign analytically, the discussion of this case is omitted.

This completes the analysis of the asymptotic behavior of m(βn, Kn) → 0 for the four
sequences considered in Theorems 5.1–5.4. In the next section we combine several results
derived in the present section with other calculations to conjecture a number of properties of the
first-order curve.

6 Properties of the First-Order Curve
The starting point of the present section is our analysis in section 5 of the asymptotics of
the magnetization m(βn, Kn) → 0 for sequences (βn, Kn) converging to the tricritical point
(βc, K(βc)). As in section 3, the structure of the sets of global minimum points of the associ-
ated Ginzburg-Landau polynomials mirrors features of the phase transitions of the model. In
the present section we operate differently. We shall use the structure of the sets of global mini-
mum points of the Ginzburg-Landau polynomials not to mirror, but to determine features of the
phase transitions in the subsets of the phase-coexistence region through which (βn, Kn) passes.
These features focus on properties of the first-order curve, properties that are notoriously dif-
ficult to derive rigorously. Although the insights into the properties of this curve given by the
Ginzburg-Landau polynomials are not rigorous, we back them up with convincing numerical
evidence.

The properties of the first-order curve to be presented in this section are stated in the form
of three conjectures involving the first three right-hand derivatives of K1(β) at βc. These three
conjectures are used in the proof of part (c) of Theorem 5.2 to verify the asymptotic behavior
of m(βn, Kn)→ 0 given there.

Before using properties of the Ginzburg-Landau polynomials to determine properties of the
first-order curve, in the next theorem we record properties of the function K(β) = (eβ + 2)/4β.
For 0 < β < βc, K(β) defines the second-order curve, while for β ≥ βc, K(β) defines the
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spinodal curve. Parts (e) and (f) express relationships between K(β) and K1(β), which for
β > βc defines the first-order curve. K1(β) has the properties given in Theorem 2.3.

Lemma 6.1. The function K(β) = (eβ + 2)/4β has the following properties.
(a) For β > 0, K ′(β) = ((β − 1)eβ − 2)/(4β2). There exists β1 > βc = log 4 such that

K ′(β) < 0 for 0 < β < β1.
(b) 4K(β)− eβ = −4βK ′(β).
(c) For β > 0, K(β) > 0 and K ′′(β) = ((β2 − 2β + 2)eβ + 4)/(4β3) > 0. Thus K(β) is a

positive, convex function of β > 0.
(d) K ′(βc) = (2βc − 3)/(2β2

c ) = −0.059166, K ′′(βc) = (β2
c − 2βc + 3)/β3

c = 0.806706,
and K ′′′(βc) = (β3

c − 3β2
c + 6βc − 9)/β4

c = −1.024398.
(e) For β > βc, K(β) > K1(β).
(f) limβ→β+

c
K1(β) = K(βc).

Proof. (a) For β > 0 we calculate K ′(β) = ((β − 1)eβ − 2)/(4β2). For 0 < β < βc the
numerator satisfies

(β − 1)eβ − 2 < (βc − 1)eβc − 2 = 4(log 4− 1)− 2 = −0.454823 < 0.

By continuity it follows that there exists β1 > βc = log 4 such that K ′(β) < 0 for 0 < β < β1.
(b) This follows from the formula for K ′(β) given in part (a).
(c) Clearly K(β) > 0 for β > 0. For β > 0, we calculate

K ′′(β) = ((β2 − 2β + 2)eβ + 4)/(4β3).

This is positive for all β > 0 since β2 − 2β + 2 > 0. It follows that K(β) is a positive, convex
function of β > 0.

(d) Since eβc = 4, the formulas for K ′(βc), K ′′(βc), and K ′′′(βc) follow from parts (a) and
(c).

(e) This is proved in Theorem 3.8 in [15].
(f) We omit the proof, which is based on a number of technical results in sections 3.1 and

3.3 of [15].

The first-order curve is defined by the function K1(β) for β > βc. We use part (f) of the last
lemma to extend the definition of this function to β = βc by defining K1(βc) = K(βc). We next
state three properties of the first-order curve in the form of three conjectures. They involve the
first three right-hand derivatives of K1(β) at βc. In doing so, we assume that these derivatives
exist and denote them by K ′1(βc), K ′′1 (βc), and K ′′′1 (βc). In combination with the definition
K1(βc) = K(βc), the first two conjectures are consistent with the fact that K1(β) < K(β) for
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all β > βc [Lem. 6.1(e)]. Our main goal in this section is to use properties of the appropriate
Ginzburg-Landau polynomials plus numerical evidence to support these conjectures.

Conjecture 1. The right-hand derivative K ′1(βc) exists, and K ′1(βc) = K ′(βc); i.e., at βc the
first-order curve and the spinodal curve have the same right-hand tangent. Numerically

K ′1(βc) = K ′(βc) = 1/βc − 3/(2β2
c ) = −0.059166.

Conjecture 2. The right-hand derivative K ′′1 (βc) exists, and K ′′1 (βc) < 0 < K ′′(βc); numeri-
cally,

K ′′1 (βc) = K ′′(βc)− 5/(4βc) = −1/(4βc)− 2/β2
c + 3/β3

c = −0.094979

< K ′′(βc) = 1/βc − 2/β2
c + 3/β3

c = 0.806706.

Conjecture 3. The right-hand derivative K ′′′1 (βc) exists, and K ′′′1 (βc) > 0; numerically,

K ′′′1 (βc) = 219/(224βc) + 3/(4β2
c ) + 6/β3

c − 9/β4
c = 0.910784.

Support for Conjecture 1 comes from the form of the Ginzburg-Landau polynomial when
the sequence (βn, Kn) in Theorem 5.1 satisfies βn > βc and converges to the tricritical point
(βc, K(βc)) along a ray lying under the tangent line to the spinodal curve {(β,K(β)), β > βc}
at the tricritical point. Given α > 0 and k ∈ R, the sequence has the form

βn = βc + 1/nα and Kn = K(βc) + k/nα.

The requirement that the sequence converges along a ray lying under the tangent line means
that k < K ′(βc). In this case the Ginzburg-Landau polynomial is given by g(x) = c6x

6 +
βc(K

′(βc) − k)x2, where c6 = 9/40. This has the same form as the Ginzburg-Landau polyno-
mial in part (b) of Theorem 5.1 except that there K ′(βc) − k < 0 and here K ′(βc) − k > 0.
With this choice of sign the Ginzburg-Landau polynomial has a unique global minimum point
at 0, implying that the sequence (βn, Kn) approaches the tricritical point from the single-phase
region. However, as Theorem 2.3 indicates, when β > βc, the single-phase region is located
under the first-order curve (β,K1(β)). It follows that at the tricritical point the right-hand tan-
gent line to the first-order curve coincides with or lies above the right-hand tangent line to the
spinodal curve; i.e., K ′1(βc) ≥ K ′(βc). On the other hand, parts (e) and (f) of Lemma 6.1 imply
that for any β > βc

K1(β)−K1(βc)

β − βc
<
K(β)−K(βc)

β − βc
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and thus that K ′1(βc) ≤ K ′(βc). We conclude that K ′1(βc) = K ′(βc), which is the content of
Conjecture 1.

By a more detailed argument that involves the uniform convergence of the scaled free-
energy functionals to the Ginzburg-Landau polynomial, we can prove Conjecture 1 under the
assumption that the right-hand derivative K ′1(βc) exists. Again, because of parts (e) and (f)
of Lemma 6.1 it suffices to prove that K ′1(βc) ≥ K ′(βc). We carry this out by showing that
K ′1(βc) < K ′(βc) leads to a contradiction. If this strict inequality holds, then we consider the
same sequence (βn, Kn) → (βc, K(βc)) in Theorem 5.1 that we considered in the preceding
paragraph, choosing k to satisfy K ′1(βc) < k < K ′(βc). According to Theorem 5.1, for any
α > 0, γ = α/4, and u = 1 − 3α/2, Gn(x) = n1−uGβn,Kn(x/nγ) converges uniformly to
g(x) uniformly for x in compact subsets of R. Since k > K ′1(βc), for all sufficiently large n,
(βn, Kn) lies in the phase-coexistence region located above the first-order curve. Hence the
global minimum points of Gβn,Kn are the symmetric pair±m(βn, Kn) [Thm. 2.3(c)]. It follows
that the global minimum points of Gn are the symmetric pair ±m̄n = ±nγm(βn, Kn) [see
(4.1)], which converge to ±x̄ as n→∞ [Thm. 5.1(b)].

In order to complete the proof, we appeal to several standard results in the theory of analytic
functions. Since k < K ′(βc), as a function of z ∈ C the derivative g′(z) = 6c6z

5+2βc(K
′(βc)−

k)z of the Ginzburg-Landau polynomial has 1 real zero at z = 0 and 4 nonreal zeroes at the 4
fourth roots of βc(k−K ′(βc))/3c6. There exists an open set V in the complex plane having the
following properties: the boundary of V is a smooth, simple, closed curve; V contains the set
{z ∈ C : <(z) ∈ [−2x̄, 2x̄],=(z) = 0}, in which the real zero of g′ at z = 0 lies, but V does
not contain the 4 nonreal zeroes of g′; Gn and g are analytic on V ; as n → ∞, Gn(z) → g(z)
uniformly for z ∈ V . It follows that as n → ∞, G′n(z) → g′(z) uniformly for z in any closed
disk contained in V [18, Thm. 3.1.8(i)]. Furthermore, by a corollary of Rouché’s Theorem [18,
p. 389], for all sufficiently large n, G′n has the same number of zeroes in V as g′, namely 1.
However, this contradicts the fact that for all sufficiently large n, G′n has two zeroes in V at
±m̄n. The contradiction shows that the inequality K ′1(βc) < K ′(βc) is not valid and thus that
K ′1(βc) ≥ K ′(βc), which is what we want to show. This completes the proof of Conjecture 1.

Support for Conjecture 2 comes from Theorem 5.2. Given α > 0, ` ∈ R, and ˜̀∈ R, in that
theorem we consider the sequence

βn = βc + 1/nα and Kn = K(βc) +K ′(βc)/n
α + `/(2n2α) + ˜̀/(6n3α).

This sequence converges to the tricritical point along the curve (β, K̃(β)), where

K̃(β) = K(βc) +K ′(βc)(β − βc) + `(β − βc)2/2 + ˜̀(β − βc)3/6.

For β > βc, for points (β,K1(β)) on the first-order curve the free-energy functional Gβ,K1(β)

has three global minimum points at 0 and ±m(β,K1(β)) [Thm. 2.3(b)]. In addition, as we
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determine in part (c) of Theorem 5.2, when ` = `c = (−β2
c − 8βc + 12)/4β3

c the limiting
Ginzburg-Landau polynomial g` has three global minimum points at 0 and ±(5/3)1/2. This
analogous structure of global minimum points both for Gβ,K when K = K1(β) and for g` when
` = `c suggests the following conclusion: when ` = `c, the curve (β, K̃(β)) along which the
given sequence (βn, Kn) converges to the tricritical point coincides with the first-order curve
(β,K1(β)) to order 2 in powers of β − βc. If this is true, then it follows that when ` = `c,

K ′′1 (βc) = K̃ ′′(βc) = `c.

Since `c = K ′′(βc)− 5/4βc [see (5.18)], Conjecture 2 follows.
We complete this section by citing numerical evidence that supports all three conjectures.

Let cβ be the function defined in (2.4). For β > βc the function K1(β) defining the first-
order curve is determined by the property that the global minimum points of Gβ,K1(β)(x) =
βK1(β)x2 − cβ(2βK1(β)x) are 0 and ±m for m = m(β,K1(β)) > 0 [Thm. 2.3(b)]. This
holds if and only if

Gβ,K1(β)(m) = 0 and G′β,K1(β)(m) = 0. (6.1)

Approximating cβ(2βK1(β)x) by its Taylor expansion to order 6, we solve the equations in the
last display, obtaining an approximation K̄1(β) to K1(β) having the following form:

K̄1(β) =
2(2 + eβ)(64− 26eβ + e2β)

3β(144− 56eβ + e2β)
. (6.2)

When β = βc = log 4, we have K̄1(βc) = 3/2βc = K(βc). This is consistent with the definition
of K1(βc) = K(βc) given before Conjecture 1. The formula for K̄1(β) is also consistent with
the values of K ′1(βc) and K ′′1 (βc) given in Conjectures 1 and 2. In fact, we calculate

K̄ ′1(βc) = 1/βc − 3/(2βc)
2 = K ′(βc) and K̄ ′′1 (βc) = −1/(4βc)− 2/β2

c + 3/β3
c .

However, the evidence cited in the next paragraph suggests that K̄ ′′′1 (βc) is not the correct value
of K ′′′1 (βc).

In order to calculate numerically the value of K ′′′1 (βc), we approximate cβ(2βK1(β)x) by
its Taylor expansion to order 8 and solve equations (6.1), obtaining an approximation K̂1(β)
to K1(β) that is too complicated to display here. K̂ ′′′1 (βc) is the value given in Conjecture
3. Like K̄1 in (6.2), K̂1(βc) = K(βc), K̂ ′1(βc) = K ′(βc), and K̂ ′′1 (βc) = K ′′(βc); however,
K̂ ′′′1 (βc) = 0.910784 < 4.53362 = K̄ ′′′1 (βc). If we approximate cβ(2βK1(β)x) by its Taylor
expansion to order 10 and solve equations (6.1), then the resulting approximation to K1(β)
has the same value at βc and the same first three right-hand derivatives at βc as K̂1(β). It is
reasonable to assume that the same properties hold for any approximation to K1(β) that arises
by replacing cβ(2βK1(β)x) by its Taylor expansion to order 12 or higher.
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This completes our discussion of properties of the first-order curve that are consistent with
properties of the Ginzburg-Landau polynomials plus numerical evidence. In the next section
we relate the results obtained in this paper to the scaling theory of critical phenomena.

7 Relationship with Scaling Theory of Critical Phenomena
The results on the asymptotic behavior of m(βn, Kn) obtained in sections 3 and 5 are related to
scaling theory for critical and tricritical points [22, 25]. In this section we review scaling theory
and show that its predictions for the magnetization are consistent with the results obtained in
those sections.

Scaling theory is based on the idea that the singular parts of thermodynamic functions near
continuous phase transitions are homogeneous functions of the distance to the phase transition.
If there is a single parameter controlling the approach to the phase transition, then the content
of scaling theory for a single thermodynamic quantity is simply that its singularities are power
laws. If there is more than one parameter, as is the case here, then scaling theory has a richer
content, especially near the tricritical point where the type of phase transition changes in a small
neighborhood.

We are interested in the magnetization m as a function of (βn, Kn), a sequence converging
either to a second-order point (β,K(β)) with 0 < β < βc or to the tricritical point (β,K(β)) =
(βc, K(βc)). In either case, the relevant parameter-space is two dimensional. Given any phase-
transition point (β,K(β)) with 0 < β ≤ βc, the natural coordinate system for scaling theory
is a curvilinear system (µ1, µ2) measuring the signed distances from the phase transition point;
µ1 is the signed distance from the curve of phase transitions and µ2 the signed distance from
the chosen point along the curve of phase transitions. Since we are concerned with the phase-
coexistence region, in all our considerations µ1 ≥ 0; however, µ2 may take either sign. At the
tricritical point, µ2 > 0 and µ1 = 0 correspond to the first-order line to the right of the tricritical
point while µ2 < 0 and µ1 = 0 correspond to the second order line to the left of the tricritical
point. At a second-order point, for sufficiently small |µ2|, (0, µ2) is also a second-order point.
Figure 4 shows this coordinate system for the special case of the tricritical point.

Scaling theory for the magnetization in a two-dimensional parameter space takes the general
form

m(µ1τ, µ2τ
a) = τ bm(µ1, µ2), (7.1)

where τ is an arbitrary scale factor and a and b are exponents to be determined [22]. The
exponents a and b are chosen so that the theory is consistent with known exponents for the
particular type of phase transition. In our case, a and b depend on whether the phase transition
point is a second-order point or the tricritical point.
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Figure 8: Curvilinear coordinate system for scaling theory showing the coordinates µ1 and µ2; µ1 is the signed
distance from the phase transition line and µ2 the signed distance from the tricritical point along the phase tran-
sition line. Regions I, II, and III are dominated, respectively, by the first-order, second-order, and tricritical phase
transition. A similar coordinate system can be defined for any point along the second-order curve.

We first consider the simpler case of a second-order point. Then the neighboring points
along the phase-transition curve are also second-order points, and there is no singular depen-
dence on µ2, implying that a = 0. The singular behavior of the magnetization is controlled
by β̃, the mean-field magnetization exponent for second-order transitions, which has the value
β̃ = 1/2 [25]. Choosing b = β̃ = 1/2, we obtain from (7.1)

m(µ1τ, µ2) = τ β̃m(µ1, µ2) = τ 1/2m(µ1, µ2). (7.2)

Setting τ = 1/µ1 yields

m(µ1, µ2) = µβ̃1m(1, µ2) = µ
1/2
1 f(µ2); (7.3)

f(µ2) is a smooth function of µ2 that depends on the chosen point (β,K(β)), and the criti-
cal amplitude f(0) is presumed to be positive. Equation (7.3) reflects the standard power-law
behavior of the magnetization near a critical point.

We now show that (7.3) is consistent with Theorems 3.1 and 3.2. These theorems give
the exact asymptotic behavior of m(βn, Kn) for sequences (βn, Kn) converging to a second-
order point. For ease of exposition, we refer to the definitions of the sequences according
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to the labeling in Figure 2 in the introduction, calling them sequences of type 1 and type 2,
respectively.

We first consider the sequence of type 1, which converges to a second-order point (β0, K(β0))
along a ray that is above the tangent line to the second-order curve at that point. Defined in (3.5),
this sequence takes the form

βn = β0 + b/nα and Kn = K(β0) + k/nα, (7.4)

where b ∈ {1, 0,−1} and K ′(β0)b− k < 0. To leading order, the coordinate µ1 is given by the
distance to the tangent to the second-order curve at (β0, K(β0)); i.e.,

µ1 ≈ (K −K(β0))−K ′(β0)(β − β0). (7.5)

Hence we obtain
µ1 ≈ (k −K ′(β0)b)/nα. (7.6)

The distance µ2 is also of order 1/nα. However, f is a smooth function of µ2 that converges to
f(0) > 0 as µ2 → 0. Hence we need only know that µ2 → 0 in order to obtain the leading-
order behavior of m from (7.3) and (7.6), namely, m ≈ (k−K ′(β0)b)1/2/nα/2. This asymptotic
formula is consistent with the exact asymptotic behavior of m(βn, Kn) given in Theorem 3.1,
correctly predicting both the exponent of n and the dependence on k and b in the prefactor x̄ as
given in (3.10) with β = β0.

We next consider the sequence of type 2, which converges to a second-order point (β0, K(β0))
along a curve lying in the phase-coexistence region and having the same tangent as the second-
order curve at that point. Defined in (3.12), this sequence takes the form

βn = β0 + b/nα and Kn = K(β0) +

p−1∑
j=1

K(j)(β0)bj/(j!njα) + `bp/(p!npα), (7.7)

where b ∈ {1,−1}, p ≥ 2, and (K(p)(β0) − `)bp < 0. In this case it is crucial to recall that
the scaling variables comprise a curvilinear coordinate system. In particular, the coordinate µ1

measures the distance from the second-order curve, not the distance from the tangent to this
curve at (β0, K(β0)); as a result (7.5) is not sufficient to determine the asymptotic behavior
of m. The sequence of type 2 converges to the second-order point along a curve that agrees
with the second-order curve to order p − 1 in powers of β − β0. Hence to leading order µ1

is proportional to the difference between the last term in the definition of Kn and the term of
order p in the Taylor expansion of K(βn), namely, µ1 ≈ |` − K(p)(β0)|/(p!npα). Substituting
this expression into (7.3) yields

m ≈ (|`−K(p)(β0)|/p!npα)β̃ = (|`−K(p)(β0)|/p!)1/2/npα/2.
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Again, this asymptotic formula is consistent with the exact asymptotic behavior of m(βn, Kn)
given in Theorem 3.2 and correctly captures the square-root dependence of the prefactor x̄ on
|`−K(p)(β0)| given in (3.17) with β = β0.

If there is more than one type of phase transition in a neighborhood of a phase-transition
point, as is the case near a tricritical point, then scaling theory becomes more complicated [22].
In the case of the tricritical point, the theory involves crossovers between the nearby first-order,
second-order, and tricritical phase transitions. Figure 4 shows the region near the tricritical
point.

The three regions I, II, and III separated by dotted lines are controlled by the first-order,
the second-order, and the tricritical phase transitions, respectively. The mean-field tricritical
crossover exponent ϕt determines the boundaries of the regions. In regions I and II we have
|µ1| � |µ2|1/ϕt while in region III |µ1| � |µ2|1/ϕt . In region II the magnetization m is con-
trolled by β̃, the mean-field magnetization exponent for second-order transitions. In region III
the magnetization m is controlled by β̃t, the mean-field magnetization exponent for tricritical
transitions, while in region I the magnetization m approaches a constant value as the first-order
line is approached. These insights are incorporated in the scaling hypothesis

m(µ1τ, µ2τ
ϕt) = τ β̃tm(µ1, µ2), (7.8)

where τ is an arbitrary scale factor [22]. This corresponds to (7.1) with a = ϕt and b = β̃t.
Setting τ = |µ2|−1/ϕt yields the alternate form

m(µ1, µ2) = |µ2|β̃t/ϕtm(µ1/|µ2|1/ϕt , 1) = |µ2|β̃t/ϕtf±(µ1/|µ2|1/ϕt), (7.9)

where f+ is used on the first-order side of the tricritical point (µ2 > 0) and f− is used on the
second-order side of the tricritical point (µ2 < 0). The values of the three relevant mean-field
exponents are ϕt = 1/2, β̃ = 1/2, and β̃t = 1/4 [23].

We now consider the form taken by the right side of (7.9) in each of the three regions. In
region III the arguments of f+ and of f− are large. Hence in order to recover the tricritical
power-law behavior of m we require that f+(x) ≈ xβ̃t and f−(x) ≈ xβ̃t as x→∞, yielding

m(µ1, µ2) ≈ µβ̃t1 = µ
1/4
1 [region III]. (7.10)

In region II with fixed µ2 we expect that the scaling is the one given in (7.2) for the second-
order curve; i.e.,

m(µ1τ, µ2) = τ β̃m(µ1, µ2) = τ 1/2m(µ1, µ2). (7.11)

The requirement that the two scaling assumptions (7.9) and (7.11) are consistent yields an in-
teresting result for the behavior of m in region II for small |µ2|. The asymptotic behavior of
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f−(x) as x → 0+ must be of the form xβ̃ in order that second-order scaling is recovered. Thus
in region II we find

m(µ1, µ2) ≈ µβ̃1 |µ2|(β̃t−β̃)/ϕt = µ
1/2
1 |µ2|−1/2 [region II]. (7.12)

Near the first-order curve in region I, for small positive µ2 a similar result can be obtained
except that m(µ1, µ2) must converge to a constant as µ1 → 0+. For (7.9) to be consistent
with first-order behavior, f+(x) must also converge to a constant as x → 0+. Hence along the
first-order curve, which is defined by µ1 = 0 and µ2 > 0, we have

m(0, µ2) ≈ µ
β̃t/ϕt
2 = µ

1/2
2 [region I]. (7.13)

We now show that these results in tricritical scaling theory are consistent with Theorems
5.1–5.4.

We first consider the sequence of type 3, which converges to the tricritical point along a
ray that is above the tangent line to the phase-transition curve at the tricritical point. This
sequence is defined as in (7.4) with β0 replaced by βc, b ∈ {1, 0,−1}, and K ′(βc)b − k < 0.
For this sequence (7.6) holds with β0 replaced by βc. Thus µ1 ≈ (k − K ′(βc)b)/n

α, and µ2

is of order 1/nα. Since this sequence lies in region III, the asymptotic formula (7.10) predicts
m ≈ µβ̃t1 ≈ (k − K ′(βc)b)

1/4/nα/4. This asymptotic formula is consistent with the exact
asymptotic behavior of m(βn, Kn) given in Theorem 5.1 and correctly predicts the 1/4-power
dependence on (k −K ′(βc)b) given in (5.10).

The sequence of type 4 is defined in (5.11) in terms of real parameters ` and ˜̀. For ` > `c =
K ′′(βc) − 5/(4βc) and appropriate choices of ˜̀, the sequences of type 4a, 4b, and 4d converge
to the tricritical point in the crossover region between regions I and III in a neighborhood of the
first-order curve. For these sequences µ2 ≈ 1/nα and µ1 ≈ (` − `c)/n2α. Hence the scaling
expression for the magnetization in (7.9) becomes

m ≈ n−αβ̃t/ϕtf+(`− `c) = f+(`− `c)/nα/2.

We note that n does not appear in the argument of f+ since 1/ϕt = 2 and the powers of n
cancel. This asymptotic formula is consistent with the exact asymptotic behavior of m(βn, Kn)
given in Theorem 5.2.

The sequence of type 4c is defined in (5.11) with ` = `c and ˜̀> K ′′′1 (βc). We conjecture
that this sequence converges to the tricritical point along a curve that coincides with the first-
order curve to order 2 in powers of β − βc and lies in the phase-coexistence region for all
sufficiently large n. Thus when ` = `c, µ1 ≈ 0 and (7.13) holds. Since µ2 ≈ 1/nα, we have
m ≈ µ

1/2
2 ≈ 1/nα/2. This result is consistent with part (c) of Theorem 5.2.
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The sequences of type 5 and type 6 approach the tricritical point along a curve that coincides
with the second-order curve to order p − 1 in powers of β − βc. These sequences are defined
in terms of a parameter ` as in (7.7) with β0 replaced by βc and b = −1; the sequence of
type 5 corresponds to the choice p = 2 while the sequence of type 6 corresponds to p ≥ 3.
Since 1/ϕt = 2, the dotted line separating regions II and III deviates quadratically from the
second-order curve. Thus the sequence of type 5, defined for ` > K ′′(βc), lies in the crossover
range between region II and region III. The sequence of type 6 lies within region II since it
approaches the second-order curve faster than quadratically. For a sequence of type 5 we have
µ1 ≈ (`−K ′′(βc))/n2α and µ2 ≈ 1/nα. From the general expression (7.9) we obtain

m ≈ n−αβ̃t/ϕtf−(`−K ′′(βc)) = n−α/2f−(`−K ′′(βc)).

Since f−(x) ≈ xβ̃ , for small xwe find thatm ≈ (`−K ′′(βc))1/2/nα/2. This asymptotic formula
is consistent with the exact asymptotic behavior ofm(βn, Kn) given in Theorem 5.3. It captures
the correct dependence of the prefactor x̄ on `−K ′′(βc) for small `−K ′′(βc) that follows from
(5.25).

The sequence of type 6 is defined as in (7.7) with β0 replaced by βc, p ≥ 3, b = −1, and
(K(p)(βc) − `)(−1)p < 0. Because this sequence converges to the tricritical point in region II,
the scaling expression (7.12) is valid. In this case µ1 ≈ |` − K(p)(βc)|/npα and µ2 ≈ 1/nα.
Substituting these values into (7.12) yields

m ≈ (|`−K(p)(βc)|/p!)1/2/n(p−1)α/2.

Once again this asymptotic formula is consistent with the exact asymptotic behavior ofm(βn, Kn)
given in Theorem 5.4. We note that scaling theory predicts the correct square-root dependence
of the prefactor x̄ on |`−K(p)(βc)| given in (5.28).

This completes the discussion of the relationship between the results obtained in sections 3
with scaling theory for critical and tricritical points [25]. We have shown that scaling theory, to-
gether with the known mean-field exponents, predicts many of the exact results for m(βn, Kn),
capturing both the correct power laws and, in some cases, the dependence on the parameters
defining the sequences.

In the next two appendices we address a number of issues related to several results contained
in the main body of the paper.

Appendix
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A Properties of Polynomials of Degree 6
The main purpose of this section is to analyze the structure of the set of global minimum points
of polynomials of degree 6 having the form g(x) = a2x

2 − a4x
4 + a6x

6, where a2 ∈ R,
a4 > 0, and a6 > 0. We use this information in section 2 in order to motivate the phase-
transition structure of the mean-field B-C model via the Ginzburg-Landau phenomenology. We
also use it in the discussion leading up to Theorem 5.2 when we show how the predictions of
the Ginzburg-Landau phenomenology can be made rigorous via properties of the Ginzburg-
Landau polynomials. Specifically, items 1–4 preceding Theorem 5.2 exhibit the structure of the
set of global minimum points of the associated Ginzburg-Landau polynomial, which precisely
mirror the phase-transition structure of the model. We end the section by briefly considering
the polynomial h(x) = a2x

2 + a4x
4 + a6x

6, where a2 ∈ R, a4 > 0, a6 > 0.
For variable a2 ∈ R and fixed a4 > 0 and a6 > 0, the analysis of the set of global mini-

mum points of g(x) = a2x
2 − a4x

4 + a6x
6 is given in Theorem A.1 in terms of the quantity

ac = a2
4/4a6. Here are the main features. If a2 > ac, then g has a unique global minimum point

at 0; if a2 = ac, then the global minimum points of g are 0 and nonzero numbers ±x̄(ac); and if
a2 < ac, then the global minimum points of g are nonzero numbers ±x̄(a2), where the positive
number x̄(a2) converges to the positive number x̄(ac) as a2 → (ac)

+. Thus the set of global
minimum points of g undergoes a discontinuous bifurcation at ac, changing discontinuously
from {0} for a2 < ac to {0,±x̄(ac)} for a2 = ac to {±x̄(a2)} for a2 > ac. The discontinu-
ous bifurcation in the set of global minimum points of g is reminiscent of a first-order phase
transition, and the value ac corresponds to a point on the first-order curve K1(β). In fact, in
section 6 we use the analogous behavior of the set of global minimum points of the appropriate
Ginzburg-Landau polynomials to deduce properties of the first-order curve.

In order to highlight the discontinuous bifurcation in the set of global minimum points of
g at ac, we give a quick proof of the fact that g has three global minimum points if and only
if a2 = ac = a2

4/4a6. Since g(x) → ∞ as |x| → ∞, the set of global minimum points of g
is nonempty. By symmetry, g has 3 global minimum points at 0 and at ±x̄ for some x̄ > 0
if and only if g(x̄) = 0 = g(0) and g′(x̄) = 0. Since x̄ > 0, these equations reduce to
a2− a4x̄

2 + a6x̄
4 = 0 and 2a2− 4a4x̄

2 + 6a6x̄
4 = 0. Eliminating a6 from both equations yields

x̄2 = 2a2/a4 or x̄ = ±(2a2/a4)1/2. Substituting this value back into g(x̄) = 0 gives 4a2a6 = a2
4

or a2 = ac. We conclude that g has three global minimum points if and only if a2 = ac, and
then the global minimum points are 0 and ±(2a2/a4)1/2. This fact is recorded in part (b) of the
next theorem.

In parts (a), (b), and (c) of the next theorem we give information about the global minimum
points of g for variable a2 ∈ R. Part (d) highlights properties of the positive global minimum
point of g for a2 ≤ ac. These properties underlie the discontinuous bifurcation in the set of
global minimum points of g at ac. For a2 > ac [part (a)], g has a similar shape as Gβ,K in
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Figure 4 in section 2; for a2 = ac [part (b)], g has a similar shape as Gβ,K in Figure 5 in section
2; and for a2 < ac [part (c)], g has a similar shape as Gβ,K in Figure 6 in section 2. The
elementary proof of the next theorem is omitted.

Theorem A.1. For variable a2 ∈ R and fixed a6 > 0 and a4 > 0, define g(x) = a2x
2 − a4x

4 +
a6x

6 and ac = a2
4/4a6. If 0 ≤ a2 ≤ a2

4/3a6, then also define the positive number

x̄(a2) = 1√
3a6

(
a4 + (a2

4 − 3a2a6)1/2
)1/2

. (A.1)

The structure of the set of global minimum points of g is as follows.
(a) If a2 > ac, then g has a unique global minimum point at 0.
(b) If a2 = ac, then the global minimum points of g are 0 and ±x̄(ac) = ±(2a2/a4)1/2.
(c) If a2 < ac, then the global minimum points of g are ±x̄(a2).
(d) x̄(a2) is a positive, decreasing, continuous function for a2 < ac, and as a2 → (ac)

−,
x̄(a2)→ x̄(ac), the unique positive, global minimum point in part (b).

We end this appendix by making several observations about the polynomial h(x) = a2x
2 +

a4x
4 + a6x

6, where a2 ∈ R, a4 > 0, and a6 > 0. Such polynomials arise in Theorem 5.3. The
elementary proof of the next theorem is omitted.

Theorem A.2. For variable a2 ∈ R and fixed a4 > 0 and a6 > 0, define h(x) = a2x
2 + a4x

4 +
a6x

6. The following conclusions hold.
(a) If a2 ≥ 0, then h has a unique global minimum point at 0.
(b) If a2 < 0, then the global minimum points of h are ±x̄(a2), where

x̄(a2) = 1√
3a6

(
−a4 + (a2

4 − 3a2a6)1/2
)1/2

. (A.2)

In the next section we give a second calculation of the asymptotics of m(βn, Kn) → 0 in
the two cases treated in Theorems 3.1 and 5.1.

B Exact Asymptotics by Another Method
In this appendix we give another proof of the asymptotic behavior ofm(βn, Kn) in two separate
cases, using an argument based directly on the fact that m(βn, Kn) is a positive zero of G′βn,Kn .
These two cases correspond to Theorem 3.1, which deals with sequence (βn, Kn) converging
to a second-order point, and to Theorem 5.1, which deals with sequence (βn, Kn) having a
similar form as the sequences in Theorem 3.1 but converging to the tricritical point. Despite
the naturalness of the characterization of m(βn, Kn) as a positive zero of G′βn,Kn , the proofs



Ellis, Machta, and Otto: Asymptotics for the Magnetization 69

of the asymptotic behaviors of m(βn, Kn) given in this appendix are much more complicated
and the respective theorems give less information than Theorems 3.1 and 5.2, which are based
on properties of the Ginzburg-Landau polynomials. This emphasizes once again the elegance
of the approach of using properties of these polynomials to deduce the asymptotic behavior of
m(βn, Kn). As in Theorems 3.1 and 5.2, the proofs of the asymptotic behaviors of m(βn, Kn)
given in this appendix rely on the fact that m(βn, Kn)→ 0, which is proved in Theorem 4.1.

We first consider the sequence (βn, Kn) in Theorem 3.1, which converge to a point on the
second-order curve. The next theorem expresses the asymptotic behavior ofm(βn, Kn) in terms
of an explicitly given quantity f(b, k), which can be seen to agree with the explicit formula for
x̄ given in (3.10) in Theorem 3.1. However, in contrast to Theorem 3.1 the next theorem does
not identify f(b, k) as the unique, positive, global minimum point of the Ginzburg-Landau
polynomial. In this sense, the next theorem gives less information than Theorem 3.1.

Theorem B.1. For β ∈ (0, βc), α > 0, b ∈ {1, 0,−1}, and k ∈ R satisfying K ′(β)b − k < 0,
define

βn = β + b/nα and Kn = K(β) + k/nα

as well as

f(b, k) =

(
96β(k − bK ′(β)|)
(eβ + 2)2 (4− eβ)

)1/2

.

The sequence (βn, Kn) converges to the second-order point (β,K(β)). The following conclu-
sions hold: m(βn, Kn)→ 0 and has the asymptotic behavior

m(βn, Kn) ∼ f(b, k)/nα/2; i.e., lim
n→∞

nα/2m(βn, Kn) = f(b, k).

Proof. In order to simplify the notation, we write mn in place of m(βn, Kn). For all sufficiently
large n, (βn, Kn) lies above the curve (β,K(β)) for 0 < β < βc. Hence for all sufficiently
large n, mn is a positive global minimum point of Gβn,Kn and thus a positive zero of G′βn,Kn .
In fact, mn is the unique, positive, global minimum point of G and the unique positive zero of
G′βn,Kn , but this fact is not needed in the proof. Since

0 = G′βn,Kn(mn)

= 2βnKnmn − (2βnKn)c′βn(2βnKnmn)

= 2βnKnmn − 2βnKn ·
e−βn(e2βnKnmn − e−2βnKnmn)

1 + e−βn(e2βnKnmn + e−2βnKnmn)
,

it follows that for all sufficiently large n, mn is the unique positive solution of

mn =
e2βnKnmn − e−2βnKnmn

eβn + e2βnKnmn + e−2βnKnmn
. (B.1)
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We now use Taylor’s Theorem to replace the exponentials in the numerator by a Taylor expan-
sion to order 3 and the exponentials in the denominator by a Taylor expansion to order 2. Since
0 < β < βc and (βn, Kn) → (β,K(β)), mn → 0 by Theorem 4.1. Hence there exist error
terms εn = O(m2

n)→ 0 and δn = O(m2
n)→ 0 such that

mn =
4βnKnmn + 8

3
β3
nK

3
nm

3
n(1 + εn)

eβn + 2 + 4β2
nK

2
nm

2
n(1 + δn)

.

Because mn > 0, this equation can be rewritten in the form

m2
n(2βnKn)2(Bn + ε̄n) + Cn = 0, (B.2)

where ε̄n = O(m2
n)→ 0 and

Bn = 1− 2βnKn/3, Cn = 2 + eβn − 4βnKn.

Thus

mn =

(
−Cn

(2βnKn)2(Bn + ε̄n)

)1/2

. (B.3)

We work out the asymptotic behavior of the terms in this equation. We have βnKn →
βK(β) = (eβ + 2)/4 and thus

(2βnKn)2(Bn + ε̄n)→ (eβ + 2)2

4

(
1− (eβ + 2)

6

)
=

1

24
(eβ + 2)2(4− eβ). (B.4)

Since 4βK(β) = eβ + 2, 4K(β) − eβ = −4βK ′(β) [Lem. 6.1(b)], and eb/nα ∼ 1 + b/nα, the
asymptotic behavior of Cn is given by

Cn = 2 + eβn − 4βnKn (B.5)
= 2 + eβeb/n

α − 4(β + b/nα)(K(β) + k/nα)

∼ −4β(k − bK ′(β))/nα.

Substituting (B.4) and (B.5) into (B.2) yields the desired asymptotic behavior of mn:

mn ∼
(

96β(k − bK ′(β))

(eβ + 2)2 (4− eβ)

)1/2

· 1

nα/2

The proof of the theorem is complete.

When β = βc, the sequence (βn, Kn) considered in Theorem B.1 converges to the tricritical
point, and the asymptotic behavior of m(βn, Kn) given in Theorem B.1 fails because in (B.4)
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4−eβc = 0. As we will see in the proof of the next theorem, in this case the asymptotic behavior
of m(βn, Kn) → 0 is determined by taking higher order terms in the Taylor expansions of the
exponentials in (B.1).

The next theorem expresses the asymptotic behavior of m(βn, Kn) in terms of an explicitly
given quantity g(b, k), which can be seen to agree with the explicit formula for x̄ given in (5.10).
However, in contrast to Theorem 5.1 the next theorem does not identify g(b, k) as the unique,
positive, global minimum point of the Ginzburg-Landau polynomial. In this sense, the next
theorem gives less information than Theorem 3.1.

Theorem B.2. For α > 0, b ∈ {1, 0,−1}, and k ∈ R satisfying bK ′(βc)− k < 0, define

βn = βc + b/nα and Kn = K(βc) + k/nθ

as well as
g(b, k) = (40βc(k −K ′(βc)b)/27)

1/4
.

Then (βn, Kn) converges to the tricritical point (βc, K(βc)). The following conclusions hold:
m(βn, Kn)→ 0 and has the the following asymptotic behavior:

m(βn, Kn) ∼ g(k, b)/nα/4.

Proof. For all sufficiently large n, (βn, Kn) lies above the curve (β,K(β)) for β > βc. Hence
for all sufficiently large n, mn is a positive global minimum point of Gβn,Kn and a positive
zero of G′βn,Kn . As in the proof of the preceding theorem, mn is the unique, positive, global
minimum point of G and the unique positive zero of G′βn,Kn , but this fact is not needed in the
present proof. Since

0 = G′βn,Kn(mn)

= 2βnKnmn − (2βnKn)c′βn(2βnKnmn)

= 2βnKnmn − 2βnKn ·
e−βn(e2βnKnmn − e−2βnKnmn)

1 + e−βn(e2βnKnmn + e−2βnKnmn)
,

it follows that for all sufficiently large n, mn is the unique positive solution of

mn =
e2βnKnmn − e−2βnKnmn

eβn + e2βnKnmn + e−2βnKnmn
. (B.6)

We now use Taylor’s Theorem to replace the exponentials in the numerator by a Taylor ex-
pansion to order 5 and the exponentials in the denominator by a Taylor expansion to order
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4. Since (βn, Kn) → (βc, K(βc)), mn → 0 by Theorem 4.1. Hence there exist error terms
εn = O(m2

n)→ 0 and δn = O(m2
n)→ 0 such that

mn =
2
(

2βnKnzn + (2βnKn)3

3!
z3
n + (2βnKn)5

5!
z5
n(1 + εn)

)
eβn + 2

(
1 + (2βnKn)2

2
z2
n + (2βnKn)4

4!
z4
n(1 + δn

) .

Because mn > 0, this equation can be rewritten in the form

m4
n

(2βnKn)4

12
(An + ε̄n) +m2

n(2βnKn)2Bn + Cn = 0, (B.7)

where ε̄n = O(m2
n)→ 0,

An = 1− 2βnKn/5, Bn = 1− 2βnKn/3, Cn = 2 + eβn − 4βnKn.

Without the term involving m4
n, the formula in (B.7) reduces to the quadratic (B.2) without the

error term ε̄n; this quadratic was used to determine the asymptotic behavior of mn in Theorem
B.1. It follows from (B.7) that

z2
n =

1
(2βnKn)4

6
(An + ε̄n)

× (B.8)(
−(2βnKn)2Bn ±

(
(2βnKn)4B2

n −
1

3
(2βnKn)4(An + ε̄n)Cn

)1/2
)

=
6

(2βnKn)2(An + ε̄n)

(
−Bn ±

(
B2
n −

1

3
(An + ε̄n)Cn

)1/2
)
.

We now work out the asymptotic behavior of the terms in this equation. We have βnKn →
βcK(βc) = 3/2 and thus

An → 2/5,

Bn = 1− 2(βc + b/nα)(K(βc) + k/nθ)/3

∼ −2bK(βc)/3n
α − 2βck/3n

α,

and as in (B.5),
Cn ∼ −4β(k − bK ′(βc))/nα.

Since An → 2/5, ε̄n → 0, and B2
n/Cn → 0, it follows from (B.8) that

m2
n ∼

6

(2βnKn)2An

(
−1

3
AnCn

)1/2

. (B.9)
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Combining this with the preceding display yields the desired asymptotic behavior of mn:

mn ∼
(

40βc(k −K ′(βc)b)
27

)1/4

· 1

nα/4

The proof of the theorem is complete.

The proofs of the last two theorems make clear that deriving the asymptotic behavior of
m(βn, Kn) → 0 in this way requires a detailed asymptotic analysis that is highly dependent
on the specific situation. In the case of Theorem B.1 the starting point is (B.3), while in the
case of Theorem B.1 the starting point is (B.8). The latter formula can also be used to deduce
the asymptotic behavior of m(βn, Kn) → 0 for the sequences appearing in Theorems 5.2–5.4.
The asymptotic expressions for Bn and Cn in (B.8) are different for each of these sequences,
and in each case one must redo the tedious calculation leading from (B.8) to the answer. By
contrast, the proofs of the asymptotic behavior ofm(βn, Kn) given in Theorems 5.1–5.4 all rely
on the general result given in Theorem 4.2. In each of these four cases the asymptotic behavior
depends on the unique, positive, global minimum point x̄ of the associated Ginzburg-Landau
polynomial. One uses the explicit formula for the sequences only in calculating the form of x̄,
a much simpler task than the detailed asymptotics that are required when applying the method
in this appendix.
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