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Landau Damping of Spin Waves in Trapped

Boltzmann Gases

R.J. Ragan, W.J. Mullin∗, and E.B. Wiita

Physics Department
University of Wisconsin at Lacrosse, La Crosse, WI 54601, USA

∗Physics Department
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A semiclassical method is used to study Landau damping of transverse pseudo-
spin waves in harmonically trapped ultracold gases in the collisionless Boltz-
mann limit. In this approach, the time evolution of a spin is calculated nu-
merically as it travels in a classical orbit through a spatially dependent mean
field. This method reproduces the Landau damping results for spin-waves in
unbounded systems obtained with a dielectric formalism. In trapped systems,
the simulations indicate that Landau damping occurs for a given spin-wave
mode because of resonant phase space trajectories in which spins are “kicked
out” of the mode (in spin space). A perturbative analysis of the resonant and
nearly resonant trajectories gives the Landau damping rate, which is calcu-
lated for the dipole and quadrupole modes as a function of the interaction
strength. The results are compared to a numerical solution of the kinetic
equation by Nikuni et al.

1. INTRODUCTION

Recent experiments at JILA1,2 have demonstrated transverse spin waves
in the pseudo spin dynamics of the hyperfine levels of trapped ultra-cold
87Rb atoms in the nondegenerate regimes. As in spin-polarized Boltzmann
gases, an exchange mean-field supporting collective spin behavior can occur
when the thermal de Broglie wavelength exceeds the effective range of the
interaction between colliding atoms3,4. Numerical simulations of the appro-
priate kinetic equations with JILA parameters have been shown to reproduce
the observed pseudo-spin oscillations.5 Using a moments method, Nikuni et
al.6 obtained analytic expressions for the spin-wave frequencies and damp-
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ing rates of the dipole and quadrupole modes in a trapped Boltzmann gas.
The results were found to be in excellent agreement with a one dimensional
numerical solution of the kinetic equation, except at intermediate densities,
where Landau damping was thought to be important. However, an estimate
using the Landau damping result for a homogeneous system7 yielded a rate
that was order of magnitude too large.

One of the disadvantages of the moments method is that the truncated
form of the distribution functions do not account for the mean field coupling
of the collective modes to higher excitations that give rise to Landau damp-
ing. Indeed, Landau damping usually requires a pole in the spin distribution
function.8 A trapped system poses another problem in that the excitation
spectrum is discrete, whereas Landau damping calculations usually involve
integration over a continuous spectrum. One method that is often used is to
look at elongated clouds and treat the long axis of the trap as infinite,9 but
the applicability of this approximation to low lying states is questionable.
In the following we use a semi-classical approach to extend the moments
method to account for Landau damping in trapped systems.

2. HOMOGENEOUS SYSTEMS

Before considering trapped systems, we review Landau damping in a
homogeneous system. We start with the kinetic equation for the normalized
transverse spin distribution s+(z, p) in the collisionless regime, linearized for
small tip angles

∂ts
+(z, p) = −(p/m)∂zs

+(p, z) − iΩ[s+(z, p) − S+(z)] (1)

where Ω is the mean-field frequency, S+(z) =
∫

s+(z, p)n(p) dp and n(p) =
(2πmkBT )−1/2 exp[−p2/(2mkBT )] is the normalized distribution in momen-
tum space. Now substituting traveling wave solutions of the form s+(z, p) =
s+(p) exp[i(qz − ωt)], and solving for s+(p) we get

s+(p) =
ΩS+

qp/m + Ω − ω
(2)

Integrating over p and taking into account the pole at pL = (m/q)(ω − Ω)
we get the same result obtained in Ref.7 using an RPA approximation:

ω = −kBT

Ωm
q2 − i

Ω2

q

√

πm

2kBT
exp

[

−1

2

Ω2

q2

m

kBT

]

(3)
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3. SEMICLASSICAL APPROACH

The above calculation of the damping rate is direct and simple, but it
cannot be easily adapted to trapped systems. We now recalculate the above
damping rate for the unbounded case using a semiclassical approach. In
the next section we adapt this approach to a numerical method for trapped
systems.

If we consider the small transverse component of a spin as it travels
along the helix, we find that its equation of motion is given by d~σ(t)/dt =
Ω~σ(t) × ~S[z(t)]. In linearized form this becomes

σ̇+ = −iΩ
(

σ+ − S+[z(t)]
)

= −iΩ
(

σ+ − eiqz(t)e−iωqt
)

(4)

where in the collisionless regime, ωq = −kBT/Ωmq2 and z(t) = pt/m. The
solution is given by

σ+(t) = 2iΩ
sin[(qp/m + Ω − ωq)t/2]

(qp/m + Ω − ω)
ei(qp/m−Ω−ωq)t/2 (5)

Obviously, we have resonance at pL ≡ (ωq − Ω)m/q in which case we have
|σ+(t)| = Ωt. Otherwise, σ+ is oscillatory, with an amplitude 2mΩ/q(p−pL)
and a beat frequency ωbeat = q(p − pL)/m. We note that in the absence of
damping the amplitude of σ+σ− is constant. Thus, the derivative of σ+σ−

gives the Landau damping rate. Using Eq.5 we have

lim
t→∞

|σ(t)|2/t = 2π
mΩ2

q
δ(p − (ωq − Ω)m/q) (6)

The contribution to the Landau damping of s+ is half this value.9 To find
the total landau damping rate we integrate over the p distribution according
to

γL = π
mΩ2

q

∫

n(p)δ(p − pL) dp (7)

which gives, assuming ω ≪ Ω, the same result as Eq.3.
We now outline a numerical procedure to find the Landau damping

rate that can be generalized to trapped systems. First we search for the
resonant momentum pL. We then measure the slope of the growth of |σ+(t)|
at resonance to get Ωeff . Finally we find qeff from the beat frequency
exhibited by s+(t) when p is slightly off resonance. According to Eq.5 we
have qeff (p − pL)Tbeat/m = 2π or

qeff =
2πm

(p − pL)Tbeat
(8)
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4. TRAPPED SYSTEMS

We restrict our attention to elongated (quasi-1d) clouds. For a trapped
system the trajectories through phase space are no longer straight lines of
constant p, but ellipses of constant energy E = p2/2m + mω2

zz
2/2, where ωz

is the axial trap frequency. Eq.4 generalizes according to

σ̇+ = −iΩ(z)
(

σ+ − S+(z, t)
)

(9)

with z(t) =
√

2E/(mω2
z ) cos(ωzt) and Ω(z) = Ω0n(z)/n0, where Ω0 is ra-

dially averaged exchange frequency4 and n(z)/n0 = exp(−mω2
zz

2/2kBT ) is
the ratio of the density of the cloud to its peak value. For the transverse
magnetization we use as an approximation the results from the moments
method of Nikuni et al.6 for the dipole and quadrupole modes:

S+
1 (z) = c1ze−iω1t (10)

S+
2 (z) = c2(z

2 − 1)e−iω2t (11)

where the frequencies are given by ωj = −Ω0/
√

8 +
√

Ω2/8 + j2ω2
z and the

normalization constants cj are determined from the condition

1 =

∫

|s+(z, p)|2n(z, p)dzdp (12)

where n(z, p) = ωz/(2πkBT ) exp(−E(z, p)/kT ). The Landau damping rate
is then given by

γL =
1

2

∫ |σ+(t)|2
t

n(z, p)dzdp

= π
mΩ2

eff

qeff

∫

√

2E

m

1

kBT
e−E/kBT δ(E − EL)dE

= π
mΩ2

eff

qeff

√

2EL

m

1

kBT
e−EL/kBT (13)

To calculate the Landau damping rate we use the numerical proce-
dure described in the previous section. Solutions of Eq.9 (See Fig.1) show
the same sort of resonant behavior as the exact solution for the homoge-
neous system. However, the effective parameters for the trapped system are
very different from those of the homogeneous system. For Ω0 = 2ωz in the
quadrupole mode we find a much smaller effective value Ωeff = 0.38ωz . For
the same Ω0 we get qeff = 0.237z−1

T where zT = (kBT/mω2
z)

1/2 is the ther-
mal cloud size. This is much smaller than an estimate in which the distance
between the nodes is taken to be a half a wavelength, giving q = 1.57ωz . (Not
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Fig. 1. Time evolution of the transverse component of a spin as it moves
through the dipole mode for Ω0 = 3.5ωz at: the resonant energy E = EL

(straight line), slightly off resonance showing beats, and far from resonance.

surprisingly, the dipole mode has a smaller value qeff = 0.158z−1
T .) Again

for Ω0 = 2ωz, in the trapped system we find EL = 4.36kBT whereas the
argument of the exponential in Eq.3 gives 0.811. Fig.2a shows the Landau
damping rate calculated from Eq.13. Fig.2b shows the collisional damping
rate calculated via the moments method6 as well as the sum of the Landau
and collisional damping rates. For comparison the numerical solutions of
the kinetic equation of Nikuni et al.6 are also shown. Although the location
of the Landau damping peaks are correct and they are of the right order
of magnitude, there are qualitative differences with the numerical solutions.
The peak Landau damping rate for the dipole mode is too large, whereas it
is too large for the quadrupole at high densities.

There are two possible improvements to the model that immediately
come to mind: 1) Better approximations of the functions S+

j (z) and the
frequencies ωj could be used. These could be obtained by including higher
moments in the moments calculation and should give a more accurate value
of the exchange field experienced by spins, especially in orbits with E > kBT .
2) The effects of collisions on Landau damping could be included. Although
these might be rather difficult to incorporate within the framework of the
current model, they might be easy to analyze for the homogeneous system,
in Eqs.(1-3), for example, and perhaps the predictions of the trapped model
could then be modified in a simple way. We leave this for future work.
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Fig. 2. a) Landau damping rate of the dipole (dashed) and quadrupole (solid)
modes as a function of the exchange frequency. b) Damping rates calculated
by Nikuni et al.6 with a numerical solution of the kinetic equation for the
dipole (circles) and quadrupole (squares) modes for 87Rb at T =800nK.
Also shown are the damping rates calculated with the moments method6

(dashed), and with Landau damping included (solid).

ACKNOWLEDGMENTS

This research was supported by NSF Grant DMR-0209606.

REFERENCES

1. H.J. Lewandowski, D.M. Harber, D.L. Whitaker, and E.A. Cornell, Phys. Rev.
Lett. 88, 070403 (2002).

2. J.M. McGuirk, H.J. Lewandowski, D.M. Harper, T. Nikuni, J.E. Williams, and
E.A. Cornell,Phys. Rev. Lett. 89, 090402 (2002).
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