2001 Vol. 35 No. 6 pp. 641-646 DOI:

General Symmetry Approach to Solve Variable-Coefficient Nonlinear Equations RUAN Hang-Yu,^{1,2} CHEN Yi-Xin² and LOU Sen-Yue¹

¹ Institute of Modern Physics, Ningbo University, Ningbo 315211, China
² Zhejiang Institute of Modern Physics, Zhejiang University, Hangzhou 310027, China (Received: 2000-8-15; Revised: 2000-11-13)

Abstract: After considering the variable coefficient of a nonlinear equation as a new dependent variable, some special types of variable-coefficient equation can be solved from the corresponding constant-coefficient equations by using the general classical Lie approach. Taking the nonlinear Schrödinger equation as a concrete example, the method is recommended in detail.

PACS: 02.32.Jr, 03.40.Kf, 11.10.Lm Key words: symmetry approach, variable coefficient equation

[Full text: PDF]

Close