2004 Vol. 41 No. 3 pp. 447-453 DOI:

Neutron Star Structure in a Nonlinear Realization of Chiral SU(3) Spontaneous Breaking Model

CHEN Han1 and L $\$

¹ Department of Physics, Sichuan University, Chengdu 610064, China
² CCAST (World Laboratory), P.O. Box 8730, Beijing 100080, China
³ Institute of Theoretical Physics, Academia Sinica, P.O. Box 2735, Beijing 100080, China (Received: 2003-6-16; Revised: 2003-8-15)

Abstract: We investigate neutron star properties by constructing a chiral SU(3) spontaneous breaking Lagrangian and using relativistic mean-field approximation. The results show that $\gamma^{-}\$ condensate appears at some baryon densities, and hyperons $\gamma^{-}\$ and $\lambda_{ambda}\$ exist in neutron star matter at high density. In this model, neutron star's maximum mass is $1.12M_s$ with corresponding radius about 8 km.

PACS: 24.85.+p, 12.38.Lg, 11.15.Pg, Key words: chiral SU(3) spontaneous breaking, \$\beta\$ stable, Oppenheimer-Volkoff equations

[Full text: PDF]

Close