Mathematical Physics

Approximate action-angle variables for the figure-eight and other periodic three-body orbits

Milovan Suvakov, V. Dmitrasinovic
(Submitted on 17 Jun 2011)

Abstract

We use the maximally permutation symmetric set of three-body coordinates, that consist of the "hyper-radius" \$R = \sqrt\{\rho^\{2\} + \lambda^\{2\}\}\$, the "rescaled area of the triangle" \$\frac\{lsqrt 3\}\{2 $\left.R^{\wedge} 2\right\} \mid\{\backslash b m$ \rho\} \times $\{\backslash b m$ Vambda\}|\$) and the (braiding) hyper-angle \$1phi = \arctan(\frac\{2\{lbm $\backslash r h o\} \backslash c d o t\left\{\backslash b m\right.$ Vambda\}\}\{\lambda^2 - $\left.\left.\backslash r h 0^{\wedge} 2\right\}\right) \$$, to analyze the "figure-eight" choreographic threebody motion discovered by Moore \cite\{Moore1993\} in the Newtonian three-body problem. Here \$\{\bm \rho\}, \{\bm \lambda\}\$ are the two Jacobi relative coordinate vectors. We show that the periodicity of this motion is closely related to the braiding hyper-angle \$1phi\$. We construct an approximate integral of motion $\$\{\backslash \operatorname{bar}\{G\}\} \$$ that together with the hyper-angle $\$ 1 p h i \$$ forms the actionangle pair of variables for this problem and show that it is the underlying cause of figure-eight motion's stability. We construct figure-eight orbits in two other attractive permutation-symmetric threebody potentials. We compare the figure-eight orbits in these three potentials and discuss their generic features, as well as their differences. We apply these variables to two new periodic, but nonchoreographic orbits: One has a continuously rising $\$ 1 p h i \$$ in time $\$ \mathrm{t} \$$, just like the figure-eight motion, but with a different, more complex periodicity, whereas the other one has an oscillating \$\phi (t$)$ \$ temporal behavior.

Comments:	11 pages, 19 figures Subjects:
Jathematical Physics (math-ph); Classical Physics (physics.class-ph)	
Journal reference:	Phys Rev E83, 056603 (2011)
DOI:	$10.1103 /$ PhysRevE.83.056603 Cite as:
	arXiv:1106.3413 [math-ph] \quad (or arXiv:1106.3413v1 [math-ph] for this version)

Submission history

From: Veljko Dmitrasinovic [view email]
[v1] Fri, 17 Jun 2011 08:34:18 GMT (419kb)
Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.

