Cornell University
Library

Mathematics > Spectral Theory

A family of anisotropic integral operators and behaviour of its maximal eigenvalue

B.S Mityagin, A.V. Sobolev

(Submitted on 1 Jun 2011)
We study the family of compact integral operators \$1mathbf $\mathrm{K} _$lbeta\$ in \$L^2 ((mathbb R)\$ with the kernel K_\beta $(x, y)=\backslash$ frac $\{1\}\{\backslash p i\} \backslash f r a c\{1\}\left\{1+(x-y)^{\wedge} 2+\right.$ lbeta^2\Theta(x, y)\}, depending on the parameter $\$ 1$ beta $>0 \$$, where $\$ \backslash$ Theta $(x, y) \$$ is a symmetric non-negative homogeneous function of degree \$lgammalge $1 \$$. The main result is the following asymptotic formula for the maximal eigenvalue $\$ \mathrm{M}$ _lbeta\$ of $\$$ lmathbf K_lbeta\$: M_lbeta = 1 - Vlambda_1 lbeta^\{|frac\{2\}\{\gamma+1\}\} +o(lbeta^\{\frac\{2\}\{\gamma+1\}\}), \betalto 0 , where \$lambda_1\$ is the lowest eigenvalue of the operator \$ ${ }^{\text {mathbf } A=|d / d x|+~}$ ITheta($\mathrm{x}, \mathrm{x}) / 2 \$$. A central role in the proof is played by the fact that $\$ \backslash$ mathbf K_lbeta, \beta>0,\$ is positivity improving. The case $\$ 1 \operatorname{Theta}(x, y)=\left(x^{\wedge} 2+y^{\wedge} 2\right)$ $\wedge 2 \$$ has been studied earlier in the literature as a simplified model of hightemperature superconductivity.

Comments: 16 pages
Subjects: \quad Spectral Theory (math.SP); Mathematical Physics (math-ph)
MSC classes: Primary 45C05, Secondary 47A75
Cite as: arXiv:1106.0127 [math.SP] (or arXiv:1106.0127v1 [math.SP] for this version)

Submission history

From: Alexander Sobolev V [view email]
[v1] Wed, 1 Jun 2011 09:38:26 GMT (15kb)
Which authors of this paper are endorsers?

Download:

- PDF
- PostScript
- Other formats

Current browse context: math.SP
 < prev | next > new | recent | 1106

Change to browse by: math math-ph

References \& Citations

- NASA ADS

Bookmark(what is this?)

Link back to: arXiv, form interface, contact.

