Mathematics > Combinatorics

The leading root of the partial theta function

Alan D. Sokal

(Submitted on 6 Jun 2011 (v1), last revised 6 Feb 2012 (this version, v2))
I study the leading root $x _0(y)$ of the partial theta function \backslash Theta $_0(x, y)=$ Isum_\{n=0\}^1infty $x^{\wedge} n y^{\wedge}\{n(n-1) / 2\}$, considered as a formal power series. I prove that all the coefficients of -x_0(y) are strictly positive. Indeed, I prove the stronger results that all the coefficients of $-1 / x _0(y)$ after the constant term 1 are strictly negative, and all the coefficients of $1 / x _0(y)^{\wedge} 2$ after the constant term 1 are strictly negative except for the vanishing coefficient of $y^{\wedge} 3$.

Comments: LaTeX2e, 22 pages including one Postscript figure. Version 2 includes a few new brief remarks; published in Advances in Mathematics
Subjects: Combinatorics (math.CO); Mathematical Physics (math-ph); Classical Analysis and ODEs (math.CA); Complex Variables (math.CV); Number Theory (math.NT)
MSC classes: 05A15 (Primary), 05A19, 05A20, 05A30, 05C30, 11B65, 11P84, 30D20, 33D15, 33D65 (Secondary)
Journal reference: Adv. Math. 229, 2603-2621 (2012)
DOI:
Cite as:
10.1016/j.aim.2012.01.012
arXiv:1106.1003 [math.CO]
(or arXiv:1106.1003v2 [math.CO] for this version)

Download:

- PDF
- PostScript
- Other formats

Ancillary files (details):

- partialtheta_xi0.m

Current browse context: math.co
< prev | next >
new | recent | 1106
Change to browse by:
math
math-ph
math.CA
math.CV
math.NT
References \& Citations

- NASA ADS

Bookmark(what is this?)

Submission history

From: Alan Sokal [view email]
[v1] Mon, 6 Jun 2011 09:49:03 GMT (6258kb,A)
[v2] Mon, 6 Feb 2012 13:29:48 GMT (6259kb,A)
Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.

