arXiv.org > cond-mat > arXiv:1106.1506

Search or Article-id

(Help | Advan

All papers

Condensed Matter > Statistical Mechanics

A solvable model of fracture with power-law distribution of fragment sizes

Ken Yamamoto, Yoshihiro Yamazaki

(Submitted on 8 Jun 2011)

The present paper describes a stochastic model of fracture, whose fragment size distribution can be calculated analytically as a power-law-like distribution. The model is basically cascade fracture, but incorporates the effect that each fragment in each stage of cascade ceases fracture with a certain probability. When the probability is constant, the exponent of the power-law cumulative distribution lies between -1 and 0, depending not only on the probability but the distribution of fracture points. Whereas, when the probability depends on the size of a fragment, the exponent is less than -1, irrespective of the distribution of fracture points.

Subjects: Statistical Mechanics (cond-mat.stat-mech); Mathematical Physics (math-

Journal reference: Physical Review E 85, 011145 (2012)

DOI: 10.1103/PhysRevE.85.011145

Cite as: arXiv:1106.1506 [cond-mat.stat-mech]

(or arXiv:1106.1506v1 [cond-mat.stat-mech] for this version)

Submission history

From: Ken Yamamoto [view email]

[v1] Wed, 8 Jun 2011 06:26:29 GMT (1135kb)

Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.

Download:

- PDF
- PostScript
- Other formats

Current browse cont cond-mat.stat-mech

< prev | next > new | recent | 1106

Change to browse b

cond-mat math math-ph

References & Citation

NASA ADS

Bookmark(what is this?)

