

arXiv.org > math > arXiv:1106.2844

Mathematics > Combinatorics

Unleashing the power of Schrijver's permanental inequality with the help of the Bethe Approximation

Leonid Gurvits

(Submitted on 14 Jun 2011 (v1), last revised 20 Jun 2012 (this version, v11))

Let \$A \in \Omega_n\$ be doubly-stochastic \$n \times n\$ matrix. Alexander Schrijver proved in 1998 the following remarkable inequality per(\widetilde{A}) \geq \prod_{1 \leq i,j \leq n} (1- A(i,j)); \widetilde{A}(i,j) =: A(i,j)(1-A(i,j)), 1 \leq i,j \leq n.

We use the above Shrijver's inequality to prove the following lower bound: $\frac{per(A)}{F(A)} \ge \frac{1}{F(A)} =: \frac{1}{\log n} (1 - A(i,j))^{1 - A(i,j)}.$ We use this new lower bound to prove S.Friedland's Asymptotic Lower Matching Conjecture(LAMC) on monomer-dimer problem.

We use some ideas of our proof of (LAMC) to disprove [Lu,Mohr,Szekely] positive correlation conjecture.

We present explicit doubly-stochastic $n \times R$ with the ratio $\frac{P(A)}{F(A)} = \frac{2}{n};$ conjecture that

 $\max_{A \in \mathbb{P}^{R}} \mathbb{P}(A) \in \mathbb{P}(A)$

If true, the conjecture (and other ones stated in the paper) would imply a deterministic poly-time algorithm to approximate the permanent of \$n \times n\$ nonnegative matrices within the relative factor \$(\sqrt{2})^{n}\$. The best current such factor is \$e^n\$.

- Comments: 30 pages, more typos are fixed, more remarks are added, importantly a concrete counter-example to [Lu,Mohr,Szekely] positive correlation conjecture is presented
- Subjects: **Combinatorics (math.CO)**; Computational Complexity (cs.CC); Information Theory (cs.IT); Mathematical Physics (math-ph)

Cite as: arXiv:1106.2844 [math.CO] (or arXiv:1106.2844v11 [math.CO] for this version)

Submission history

From: Leonid Gurvits [view email] [v1] Tue, 14 Jun 2011 23:43:36 GMT (8kb)

icle-id	(He
	and the second secon

Search or Art

All papers 🚽 Go!

lp | Advanced search)

Download:

- PDF
- PostScript
- Other formats

Current browse context: math.CO

< prev | next >

new | recent | 1106

Change to browse by:

cs cs.CC cs.IT math math-ph

References & Citations

NASA ADS

Bookmark(what is this?)

[v2] Fri, 17 Jun 2011 01:59:57 GMT (8kb)
[v3] Thu, 8 Dec 2011 02:48:37 GMT (13kb)
[v4] Tue, 13 Dec 2011 00:09:54 GMT (14kb)
[v5] Tue, 20 Dec 2011 21:55:38 GMT (14kb)
[v6] Thu, 1 Mar 2012 05:41:56 GMT (18kb)
[v7] Fri, 2 Mar 2012 01:49:40 GMT (19kb)
[v8] Mon, 5 Mar 2012 22:06:20 GMT (19kb)
[v9] Thu, 15 Mar 2012 01:34:59 GMT (19kb)
[v10] Thu, 24 May 2012 00:39:10 GMT (19kb)
[v11] Wed, 20 Jun 2012 00:55:40 GMT (20kb)

Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.