Mathematics > Differential Geometry

The Quillen metric, analytic torsion and tunneling for high powers of a holomorphic line bundle

Robert J. Berman

(Submitted on 15 Jun 2011)
Let L be a line bundle over a compact complex manifold X (possibly nonKahler) and denote by $\mathrm{h} _\{\mathrm{L}\}$ and $\mathrm{h} _\{X\}$ fixed Hermitian metrics on L and $T X$, respectively. We generalize the asymptotics for the induced Quillen metric on the determinant line associated to a higher tensor power of L to the nonKahler setting. In the case when L is ample we also obtain the leading asymptotics for the Ray-Singer analytic torsion of a (possbly non-positively curved) metric on L , without assuming $\mathrm{h} _\{\mathrm{X}\}$ is $\mathrm{K} \mid$ "ahler. The key point of the proofs is to relate the asymptotics of the torsions above to "tunneling", i.e. to the distribution of the exponentially small eigenvalues of the corresponding Dolbeault-Kodaira Laplacians. The proof thus avoids the use of the exact (i.e. non-asymptotic) deep results of Bismut-Gillet-Soull'e for the Quillen metric, which are only known to hold under the assumption that $h _\{X\}$ be Kahler. Accordingly the proofs are comparatively simple also in the Kahler case. A brief comparison with the tunneling effect for Witten Laplacians and large deviation principles for fermions is also made.

Comments: 14 pages, no figures
Subjects: Differential Geometry (math.DG); Mathematical Physics (math-ph); Algebraic Geometry (math.AG)
Cite as: arXiv:1106.2965 [math.DG] (or arXiv:1106.2965v1 [math.DG] for this version)

Submission history

From: Robert Berman [view email]
[v1] Wed, 15 Jun 2011 12:59:36 GMT (16kb)
Which authors of this paper are endorsers?

Download:

- PDF
- PostScript
- Other formats

Current browse context: math.DG
< prev|next > new | recent | 1106

Change to browse by:
math
math-ph
math.AG
References \& Citations

- NASA ADS

Bookmark(what is this?)

