Mathematics > Dynamical Systems

Selection of measure and a Large Deviation Principle for the general XY model

Artur O. Lopes, Jairo Mengue

(Submitted on 15 Jun 2011 (v1), last revised 25 May 2012 (this version, v2))
We consider $\$(\mathrm{M}, \mathrm{d})$ \$ a connected and compact manifold and we denote by $\$ \mathrm{X} \$$ the Bernoulli space $\$ \mathrm{M}^{\wedge}\{$ mathbb $\{\mathrm{N}\}\} \$$. The shift acting on $\$ \mathrm{X} \$$ is denoted by $\$$ lsigma $\$$.
We analyze the general XY model, as presented in a recent paper by A. T. Baraviera, L. M. Cioletti, A. O. Lopes, J. Mohr and R. R. Souza. Denote the Gibbs measure by $\$ \backslash m u _\{c\}:=h _\{c\} \backslash n u _\{c\} \$$, where $\$ \mathrm{~h} _\{c\} \$$ is the eigenfunction, and, $\$ \operatorname{lnu} _\{c\} \$$ is the eigenmeasure of the Ruelle operator associated to \$cf\$. We are going to prove that any measure selected by \$1mu_\{c\}\$, as \$clto +linfty\$, is a maximizing measure for $\$ \$ \$$. We also show, when the maximizing probability measure is unique, that it is true a Large Deviation Principle, with the deviation function \$R_\{+\}^\{linfty\}=|sum_\{j=0\}^1infty $R _\{+\}$(lsigma^f)\$, where $\$ R _\{+\}:=1$ beta(f) + Vlcirclsigma - V - \mathfrak{f}, and, $\$ \mathrm{~V} \$$ is any calibrated subaction.

Subjects: Dynamical Systems (math.DS); Statistical Mechanics (cond-mat.stat-mech); Mathematical Physics (math-ph); Probability (math.PR)
MSC classes: 37A60, 37A50, 37A05, 82B05
Cite as: arXiv:1106.3118 [math.DS]
(or arXiv:1106.3118v2 [math.DS] for this version)

Submission history

From: Artur Lopes O. [view email]
[v1] Wed, 15 Jun 2011 23:14:02 GMT (11kb)
[v2] Fri, 25 May 2012 11:10:20 GMT (12kb)
Which authors of this paper are endorsers?

Download:

- PDF
- PostScript
- Other formats

Current browse cont math.DS
< prev | next >
new | recent | 1106
Change to browse b cond-mat
cond-mat.stat-mech math math-ph math.PR

References \& Citatic - NASA ADS

Bookmark(what is this?)

Link back to: arXiv, form interface, contact.

