

Phases

Cornell University Library

arXiv.org > cond-mat > arXiv:1106.3267

Condensed Matter > Strongly Correlated Electrons

Simon Trebst, Matthias Troyer, Zhenghan Wang

Galois Conjugates of Topological

Michael H. Freedman, Jan Gukelberger, Matthew B. Hastings,

(Submitted on 16 Jun 2011 (v1), last revised 5 Jul 2011 (this version, v3))

topological quantum field theories (TQFTs) to their non-unitary counterparts.

Levin-Wen model. While these Galois conjugated Hamiltonians are typically

protection. The key question addressed in this paper is whether such non-

unitary topological phases can also appear as the ground states of Hermitian

non-Hermitian, we find that their ground state wave functions still obey a generalized version of the usual code property (local operators do not act on

the ground state manifold) and hence enjoy a generalized topological

Here we investigate Galois conjugates of quantum double models, such as the

Galois conjugation relates unitary conformal field theories (CFTs) and

Search or Article-id

(Help | Advanced search) All papers

Download:

- PDF
- Other formats

Ancillary files (details):

- honey_gap_L.vtl
- ladder_E_around_theta0.vtl
- ladder_dyl_gap_theta.vtl
- ladder_dyl_spectrum_sweep.vtl
- ladder_gap_L.vtl (2 additional files not shown) You must enabled JavaScript to view entire file list.

Current browse context:

cond-mat.str-el

< prev | next >

new | recent | 1106

Change to browse by:

cond-mat cond-mat.mes-hall math math-ph

References & Citations

NASA ADS

1 blog link(what is this?)

Bookmark(what is this?)

Hamiltonians. Specific attempts at constructing Hermitian Hamiltonians with	
these ground states lead to a loss of the code property and topological	
protection of the degenerate ground states. Beyond this we rigorously prove	
that no local change of basis can transform the ground states of the Galois	
conjugated doubled Fibonacci theory into the ground states of a topological	
model whose Hermitian Hamiltonian satisfies Lieb-Robinson bounds. These	
include all gapped local or quasi-local Hamiltonians. A similar statement holds	
for many other non-unitary TQFTs. One consequence is that the "Gaffnian"	
wave function cannot be the ground state of a gapped fractional quantum Hall	
state.	
Comments:	16 pages, 8 figures
Subjects:	Strongly Correlated Electrons (cond-mat.str-el);
-	Mesoscale and Nanoscale Physics (cond-mat.mes-hall); Mathematical Physics (math-ph)

Journal reference: Phys. Rev. B 85, 045414 (2012) DOI: 10.1103/PhysRevB.85.045414

Cite as: arXiv:1106.3267 [cond-mat.str-el]

(or arXiv:1106.3267v3 [cond-mat.str-el] for this version)

Submission history

From: Jan Gukelberger [view email] [v1] Thu, 16 Jun 2011 16:28:09 GMT (2376kb,AD) [v2] Mon, 20 Jun 2011 12:59:02 GMT (973kb,AD) **[v3]** Tue, 5 Jul 2011 18:02:58 GMT (973kb,AD)

Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.